Anatomical substrates for functional columns in macaque monkey primary visual cortex. 2003

Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
Moran Eye Center, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA. Jennifer.Lund@hsc.utah.edu

In this review we re-examine the concept of a cortical column in macaque primary visual cortex, and consider to what extent a functionally defined column reflects any sort of anatomical entity that subdivides cortical territory. Functional studies have shown that columns relating to different response properties are mapped in cortex at different spatial scales. We suggest that these properties first emerge in mid-layer 4C through a combination of thalamic afferent inputs and local intracortical circuitry, and are then transferred to other layers in a columnar fashion, via interlaminar relays, where additional processing occurs. However, several properties are not strictly columnar since they do not appear in all cortical layers. In contrast to the functional column, an anatomically based cortical column is defined most clearly in terms of the reciprocal connections it makes, both via intra-areal lateral connections and inter-areal feedback/feedforward pathways. The column boundaries are reinforced by interplay between lateral inhibition spreading beyond the column boundary and disinhibition within the column. The anatomical column acts as a functionally tuned unit and point of information collation from laterally offset regions and feedback pathways. Thalamic inputs provide the high-contrast receptive field sizes of the column's neurons, intra-areal lateral connections provide their low contrast summation field sizes, and feedback pathways provide surround modulation of receptive fields responses.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013788 Thalamus Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain. Thalamencephalon,Thalamencephalons
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
January 1988, Annual review of neuroscience,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
February 1978, The Journal of comparative neurology,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
July 1977, Proceedings of the Royal Society of London. Series B, Biological sciences,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
April 1996, Behavioural brain research,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
January 1998, Annual review of neuroscience,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
September 1977, Nature,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
February 1969, Nature,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
September 1998, Nature,
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
October 2002, Cerebral cortex (New York, N.Y. : 1991),
Jennifer S Lund, and Alessandra Angelucci, and Paul C Bressloff
November 1992, Nature,
Copied contents to your clipboard!