The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. 2001

E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, University of Colorado Cancer Center, Denver, Colorado, USA.

The differentiating agent and histone deacetylase inhibitor, sodium butyrate (NaB), was shown previously to cause a transient, 3-17-fold induction of human DNA topoisomerase II alpha (topo II alpha) gene promoter activity and a 2-fold increase in topo II alpha protein early in monocytic differentiation of HL-60 cells. This observation has now been extended to other short chain fatty acids and aromatic butyrate analogues, and evidence is presented that human topo II alpha promoter induction correlates closely with histone H4 acetylation status. Because increased topo II alpha expression is associated with enhanced efficacy of topo II-poisoning antitumor drugs such as etoposide, the hypothesis tested in this report was whether NaB pretreatment could sensitize HL-60 myeloid leukemia and K562 erythroleukemia cells to etoposide-triggered DNA damage and cell death. A 24-72 h NaB treatment (0.4-0.5 mM) induced topo II alpha 2-2.5-fold in both HL-60 and K562 cells and caused a dose-dependent enhancement of etoposidestimulated, protein-linked DNA complexes in both cell lines. At concentrations with minimal effects on cell cycle kinetics (0.4 mM in HL-60; 0.5 mM in K562), NaB pretreatment also modestly enhanced etoposidetriggered apoptosis in HL-60 cells, as determined morphologically after acridine orange/ethidium bromide staining, and substantially increased K562 growth inhibition and poly(ADP-ribose)polymerase cleavage after etoposide exposure. Therefore, a temporal window may exist whereby a differentiating agent may sensitize experimental leukemias to a cytotoxic antitumor agent. These results indicate that histone deacetylase inhibitors should be investigated for etoposide sensitization of other butyrate-responsive hematopoietic and nonhematopoietic tumor lines in vitro and in vivo.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor

Related Publications

E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
November 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
August 2000, Gan to kagaku ryoho. Cancer & chemotherapy,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
June 2010, Leukemia research,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
October 2019, Immunological investigations,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
November 2007, Journal of neuro-oncology,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
May 2007, Biochemical pharmacology,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
January 1997, Journal of cancer research and clinical oncology,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
August 2007, Journal of biotechnology,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
June 1996, Cancer research,
E U Kurz, and S E Wilson, and K B Leader, and B P Sampey, and W P Allan, and J C Yalowich, and D J Kroll
November 2000, Nature genetics,
Copied contents to your clipboard!