Effect of O6-benzylguanine on nitrogen mustard-induced toxicity, apoptosis, and mutagenicity in Chinese hamster ovary cells. 2001

Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
Section of Hematology-Oncology, Department of Medicine, Committee on Clinical Pharmacology, Cancer Research Center, University of Chicago, Chicago, Illinois 60637, USA.

O6-Benzylguanine (BG) inactivates O6-alkylguanine-DNA alkyltransferase (AGT), resulting in an increase in the sensitivity of cells to the toxic effects of O6-alkylating agents. BG significantly enhances the cytotoxicity and decreases the mutagenicity of nitrogen mustards [i.e., phosphoramide mustard (PM), melphalan, and chlorambucil], a group of alkylating agents not known to produce O6-adducts in DNA. The enhancement is observed in cells irrespective of AGT activity. Exposure of Chinese hamster ovary cells to 100 microM BG results in enhancement in the cytotoxicity of PM (300 microM), chlorambucil (40 microM), and melphalan (10 microM) by 9-, 7-, and 18-fold, respectively. In contrast, mutation frequency after treatment with 300 microM PM is decreased from 259 mutants/10(6) cells to 22 mutants/10(6) cells when cells are pretreated with BG. The enhancement of toxicity of these bis-alkylating agents appears to involve cross-link formation, because neither cytotoxicity nor mutagenicity of a monoalkylating PM analogue is significantly altered when combined with BG. Enhanced cytotoxicity and decreased mutagenicity is concomitant with a dramatic increase in the number of cells undergoing apoptosis when BG is combined with PM, melphalan, or chlorambucil at 72-94 h after treatment. Cell cycle analysis demonstrates that BG alone or combined with nitrogen mustards arrests cells in G1 phase of the cell cycle. At 16 h after treatment, 11 and 57% of cells treated with PM alone or with BG plus PM are in G1 phase, respectively. Our data suggest that treatment with BG causes G1 arrest and drives noncycling cells treated with nitrogen mustards into apoptosis, thus protecting against mutagenic DNA damage introduced by nitrogen mustards.

UI MeSH Term Description Entries
D008558 Melphalan An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen. Medphalan,Merphalan,Phenylalanine Mustard,Sarcolysine,Sarkolysin,4-(Bis(2-chloroethyl)amino)phenylalanine,Alkeran,L-PAM,Mustard, Phenylalanine
D010752 Phosphoramide Mustards A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents. Mustards, Phosphoramide
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002699 Chlorambucil A nitrogen mustard alkylating agent used as antineoplastic for chronic lymphocytic leukemia, Hodgkin's disease, and others. Although it is less toxic than most other nitrogen mustards, it has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (Merck Index, 11th ed) 4-(Bis(2-chloroethyl)amino)benzenebutanoic Acid,Amboclorin,CB-1348,Chloraminophene,Chlorbutin,Leukeran,Lympholysin,N,N-Di-(2-chloroethyl)-p-aminophenylbutyric Acid,NSC-3088,CB 1348,CB1348,NSC 3088,NSC3088
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006147 Guanine
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
July 1992, Cancer research,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
March 1991, Mutation research,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
September 2006, Neuroscience letters,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
January 1982, Mutation research,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
July 1980, Cancer research,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
January 2012, Biotechnology progress,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
January 1996, Teratogenesis, carcinogenesis, and mutagenesis,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
October 2003, Cancer chemotherapy and pharmacology,
Y Cai, and S M Ludeman, and L R Wilson, and A B Chung, and M E Dolan
January 2003, Journal of applied toxicology : JAT,
Copied contents to your clipboard!