Odorant responses of Xenopus laevis tadpole olfactory neurons: a comparison between preparations. 2002

Ivan Manzini, and Florian Peters, and Detlev Schild
Physiologisches Institut, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.

We used a slice preparation of the olfactory epithelium of Xenopus laevis tadpoles to record odorant responses of olfactory receptor neurons (ORNs) and compared these to odorant responses recorded in isolated ORNs. The maximum recording time in the slice was considerably longer than in isolated ORNs, which is essential when many odorants are to be tested. No odorant-induced responses could be obtained from isolated ORNs recorded in the on-cell mode, while recordings in the slice (on-cell and whole-cell) as well as previously reported perforated-patch recordings in isolated ORNs of the same species () were successful, though qualitatively different. In the slice preparation, amino acids as well as an extract from Spirulina algae always induced excitatory responses, while, in a previous study on isolated ORNs, responses were either excitatory or inhibitory. The results of this study show that ORNs obtained using different preparation techniques can give markedly different responses upon the application of odorants. Our experiments indicate that the slice preparation combined with the on-cell configuration of the patch-clamp technique is the method of choice for testing many odorants on individual ORNs.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate

Related Publications

Ivan Manzini, and Florian Peters, and Detlev Schild
January 2005, The Journal of comparative neurology,
Ivan Manzini, and Florian Peters, and Detlev Schild
December 2002, The Journal of physiology,
Ivan Manzini, and Florian Peters, and Detlev Schild
April 2023, Developmental and comparative immunology,
Ivan Manzini, and Florian Peters, and Detlev Schild
June 1987, Brain research,
Ivan Manzini, and Florian Peters, and Detlev Schild
January 1985, Journal of molecular biology,
Ivan Manzini, and Florian Peters, and Detlev Schild
February 2000, Chemical senses,
Ivan Manzini, and Florian Peters, and Detlev Schild
May 1971, Animal behaviour,
Ivan Manzini, and Florian Peters, and Detlev Schild
October 2021, Cold Spring Harbor protocols,
Ivan Manzini, and Florian Peters, and Detlev Schild
January 1953, Folia biologica,
Ivan Manzini, and Florian Peters, and Detlev Schild
September 2005, Nature medicine,
Copied contents to your clipboard!