Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. 2003

Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.

The MoFe protein component of the complex metalloenzyme nitrogenase is an alpha2beta2 tetramer encoded by the nifD and the nifK genes. In nitrogen fixing organisms, the alpha and beta subunits are translated as separate polypeptides and then assembled into tetrameric MoFe protein complex that includes two types of metal centers, the P cluster and the FeMo cofactor. In Azotobacter vinelandii, the NifEN complex, the site for biosynthesis of the FeMo cofactor, is an alpha2beta2 tetramer that is structurally similar to the MoFe protein and encoded as two separate polypeptides by the nifE and the nifN genes. In Anabaena variabilis it was shown that a NifE-N fusion protein encoded by translationally fused nifE and nifN genes can support biological nitrogen fixation. The structural similarity between the MoFe protein and the NifEN complex prompted us to test whether the MoFe protein could also be functional when synthesized as a single protein encoded by nifD-K translational fusion. Here we report that the NifD-K fusion protein encoded by nifD-K translational fusion in A. vinelandii is a large protein (as determined by Western blot analysis) and is capable of supporting biological nitrogen fixation. These results imply that the MoFe protein is flexible in that it can accommodate major structural changes and remain functional.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008983 Molybdoferredoxin A non-heme iron-sulfur protein isolated from Clostridium pasteurianum and other bacteria. It is a component of NITROGENASE, which is active in nitrogen fixation, and consists of two subunits with molecular weights of 59.5 kDa and 50.7 kDa, respectively. Molybdenum-Iron Protein,FeMo Cofactor,Iron-Molybdenum Cofactor,MoFe Protein,Iron Molybdenum Cofactor,Molybdenum Iron Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D016948 Azotobacter vinelandii A species of gram-negative, aerobic bacteria first isolated from soil in Vineland, New Jersey. Ammonium and nitrate are used as nitrogen sources by this bacterium. It is distinguished from other members of its genus by the ability to use rhamnose as a carbon source. (From Bergey's Manual of Determinative Bacteriology, 9th ed) Azotobacter miscellum

Related Publications

Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
October 1987, Proceedings of the National Academy of Sciences of the United States of America,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
January 1984, Proceedings of the National Academy of Sciences of the United States of America,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
February 2015, Acta crystallographica. Section D, Biological crystallography,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
July 1975, Biochimica et biophysica acta,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
November 2005, Biochemical and biophysical research communications,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
June 1981, The Journal of biological chemistry,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
January 1979, Biochimica et biophysica acta,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
Man-Hee Suh, and Lakshmi Pulakat, and Nara Gavini
November 2007, Journal of inorganic biochemistry,
Copied contents to your clipboard!