Lead phytoextraction from contaminated soil with high-biomass plant species. 2002

Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
Inst. of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.

In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D001937 Brassica A plant genus of the family Cruciferae. It contains many species and cultivars used as food including cabbage, cauliflower, broccoli, Brussel sprouts, kale, collard greens, MUSTARD PLANT; (B. alba, B. junica, and B. nigra), turnips (BRASSICA NAPUS) and rapeseed (BRASSICA RAPA). Broccoli,Brussel Sprout,Cabbage,Cauliflower,Collard Green,Kale,Cabbages,Collard Greens
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D012989 Soil Pollutants Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading. Soil Pollutant,Pollutant, Soil,Pollutants, Soil
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014876 Water Pollution Contamination of bodies of water (such as LAKES; RIVERS; SEAS; and GROUNDWATER.) Thermal Water Pollution,Water Pollution, Thermal,Pollution, Thermal Water,Pollution, Water,Pollutions, Thermal Water,Pollutions, Water,Thermal Water Pollutions,Water Pollutions,Water Pollutions, Thermal

Related Publications

Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
January 2008, International journal of phytoremediation,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
August 2017, Bulletin of environmental contamination and toxicology,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
May 1999, Applied and environmental microbiology,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
May 2002, Bulletin of environmental contamination and toxicology,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
January 2015, International journal of phytoremediation,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
February 2019, Journal of hazardous materials,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
April 2022, Plants (Basel, Switzerland),
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
December 2010, Huan jing ke xue= Huanjing kexue,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
August 2012, International journal of phytoremediation,
Zhen-Guo Shen, and Xiang-Dong Li, and Chun-Chun Wang, and Huai-Man Chen, and Hong Chua
January 2022, The Science of the total environment,
Copied contents to your clipboard!