Nitrogen and phosphorus availability in composted and uncomposted poultry litter. 2002

P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
Hood College and University of Maryland, 8020 Greenmead Drive, College Park, MD 20740-4000, USA.

Poultry litter applications to land have been based on crop N requirements, resulting in application of P in excess of plant requirements, which may cause degradation of water quality in the Chesapeake Bay watershed. The effect of litter source (the Delmarva Peninsula and Moorefield, West Virginia) and composting of poultry litter on N mineralization and availability of P in two soil types (sandy loam and silt loam) was determined in a controlled environment for 120 d. Nitrogen mineralization (percent total organic N converted to inorganic nitrogen) rates were higher for fresh litter (range of 42 to 64%) than composted litter (range of 1 to 9%). The N mineralization rate of fresh litter from the Delmarva Peninsula was consistently lower than the fresh litter from Moorefield, WV. The N mineralization rate of composted litter from either source was not significantly different for each soil type (7 to 9% in sandy loam and 1 to 5% in silt loam) even though composting conditions were completely different at the two composting facilities. Litter source had a large effect on N mineralization rates of fresh but not composted poultry litter. Composting yielded a more predictable and reliable source of mineralizable N than fresh litter. Water-extractable phosphorus (WEP) was similar in soils amended with composted litter from WV and fresh litter from both sources (approximately 10 to 25 and 2 to 14 mg P kg(-1) for sandy loam and silt loam, respectively). Mehlich 1-extractable phosphorus (MEP) was similar in soils amended with WV fresh litter and composted litter from both sources (approximately 100 to 140 and 60 to 90 mg P kg(-1) for sandy loam and silt loam, respectively). These results suggest that the composting process did not consistently reduce WEP and MEP, and P can be as available in composted poultry litter as in fresh poultry litter.

UI MeSH Term Description Entries
D008372 Manure Accumulations of solid or liquid animal excreta usually from stables and barnyards with or without litter material. Its chief application is as a fertilizer. (From Webster's 3d ed)
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011200 Poultry Domesticated birds raised for food. It typically includes CHICKENS; TURKEYS, DUCKS; GEESE; and others. Fowls, Domestic,Domestic Fowl,Domestic Fowls,Fowl, Domestic,Poultries
D003247 Conservation of Natural Resources The protection, preservation, restoration, and rational use of all resources in the total environment. Carrying Capacity,Deforestation,Desertification,Environmental Protection,Natural Resources Conservation,Protection, Environmental,Capacities, Carrying,Capacity, Carrying,Carrying Capacities,Conservation, Natural Resources
D005068 Eutrophication The enrichment of a terrestrial or aquatic ECOSYSTEM by the addition of nutrients, especially nitrogen and phosphorus, that results in a superabundant growth of plants, ALGAE, or other primary producers. It can be a natural process or result from human activity such as agriculture runoff or sewage pollution. In aquatic ecosystems, an increase in the algae population is termed an algal bloom. Algal Bloom,Algal Blooms,Bloom, Algal,Blooms, Algal,Eutrophications
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D012989 Soil Pollutants Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading. Soil Pollutant,Pollutant, Soil,Pollutants, Soil

Related Publications

P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
February 2009, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
March 1981, The Journal of nutrition,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
January 2006, Journal of environmental quality,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
January 2011, Journal of environmental quality,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
August 2020, Bioresource technology,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
January 2007, Journal of environmental quality,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
May 2011, International journal of environmental research and public health,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
January 2006, Journal of environmental quality,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
January 2008, Journal of environmental quality,
P L Preusch, and P R Adler, and L J Sikora, and T J Tworkoski
September 2016, Journal of environmental quality,
Copied contents to your clipboard!