Effect of ischemic preconditioning on hepatic microcirculation and function in a rat model of ischemia reperfusion injury. 2002

Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
Hepatic Haemodynamic Unit, University Department of Surgery, Royal Free and University College Medical School, University College London Royal Free Hospital, London, United Kingdom.

Ischemic preconditioning (IPC) may protect the liver from ischemia reperfusion injury by nitric oxide formation. This study has investigated the effect of ischemic preconditioning on hepatic microcirculation (HM), and the relationship between nitric oxide metabolism and HM in preconditioning. Rats were allocated to 5 groups: 1. sham laparotomy; 2. 45 minutes lobar ischemia followed by 2-hour reperfusion (IR); 3. IPC with 5 minutes ischemia and 10 minutes reperfusion before IR; 4. L-arginine before IR; and 5. L-NAME + IPC before IR. HM was monitored by laser Doppler flowmeter. Liver transaminases, adenosine triphosphate, nitrites + nitrates, and guanosine 3'5'-cyclic monophosphate (cGMP) were measured. Nitric oxide synthase (NOS) distribution was studied using nicotinamide adeninine dinucleotide phosphate (NADPH) diaphorase histochemistry. At the end of reperfusion phase, in the IR group, flow in the HM recovered partially to 25.8% of baseline (P < .05 versus sham), whereas IPC improved HM to 49.5% of baseline (P < .01 versus IR). With L-arginine treatment, HM was 31.6% of baseline (NS versus IR), showing no attenuation of liver injury. In the preconditioned group treated with L-NAME, HM declined to 10.2% of baseline, suggesting not only a blockade of the preconditioning effect, but also an exacerbated liver injury. Hepatocellular injury was reduced by IPC, and L-arginine and was increased by NO inhibition with L-NAME. IPC also increased nitrate + nitrate (NOx) and cGMP concentrations. NOS detected by NADPH diaphorase staining was associated with hepatocytes and vascular endothelium, and was induced by IPC. IPC induced NOS and attenuated HM impairment and hepatocellular injury. These data strongly suggest a role for nitric oxide in IPC.

UI MeSH Term Description Entries
D008058 Dihydrolipoamide Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES. Lipoamide Dehydrogenase,NAD Diaphorase,NADH Diaphorase,Diaphorase (Lipoamide Dehydrogenase),Dihydrolipoyl Dehydrogenase,Glycine Decarboxylase Complex L-Protein,L-Protein, Glycine Decarboxylase Complex,Lipoamide Dehydrogenase, Valine,Lipoic Acid Dehydrogenase,Lipoyl Dehydrogenase,Valine Lipoamide Dehydrogenase,Dehydrogenase, Dihydrolipoamide,Dehydrogenase, Dihydrolipoyl,Dehydrogenase, Lipoamide,Dehydrogenase, Lipoic Acid,Dehydrogenase, Lipoyl,Dehydrogenase, Valine Lipoamide,Diaphorase, NAD,Diaphorase, NADH,Glycine Decarboxylase Complex L Protein
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
March 2009, HPB : the official journal of the International Hepato Pancreato Biliary Association,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
November 2000, Transplantation proceedings,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
March 2007, Transplantation proceedings,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
January 2014, BioMed research international,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
January 2004, Histology and histopathology,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
August 2014, Hepatobiliary surgery and nutrition,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
August 2000, Hunan yi ke da xue xue bao = Hunan yike daxue xuebao = Bulletin of Hunan Medical University,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
January 2003, Journal of hepatology,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
August 2018, Archives of medical research,
Rahul S Koti, and Wenxuan Yang, and Michael R Dashwood, and Brian R Davidson, and Alexander M Seifalian
November 2007, Digestive diseases and sciences,
Copied contents to your clipboard!