Introduction of purified hexosaminidase A into Tay-Sachs leukocytes by means of immunoglobulin-coated liposomes. 1976

C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava

To determine whether ligand-receptor interactions could engender the selective uptake by deficient cells of enzyme-laden liposomes, aggregated human IgG was used to coat liposomes which had previously trapped purified hexosaminidase A (Hex A). By a new, high-yield procedure, Hex A was purified 7000-fold from human placenta: the homogeneous protein had a pI of 5.4, permitting nonelectrostatic trapping in the aqueous interstices of anionic multilamellar liposomes (molar ratios of phosphatidyl-choline-dicetyl phosphate-cholesterol, 7:2:1). Trapped Hex A was separated from free enzyme by means of Sephadex G-200 chromatography: 1.3 +/- 0.3 mUnits of Hex A/mumol of phospholipid became associated with liposomes and trapped glucose, utilized as a marker of the aqueous compartment. Once sequestered, the enzyme remained latent until lamellae were disrupted by Triton X-100. Presence of enzyme in aqueous compartments was proved by the demonstration of increased trapping (0.02-1.33 mUnits/mumol of phospholipid) with increments in like-sign repulsion of the bilayers produced by increasing molar ratios of anionic dicetyl phosphate (5-20%). To provide for ligand-receptor interaction with surface Fc receptors of human polymorphonuclear leukocytes (PMN's), liposomes were coated by heat-aggregated (62 degrees C, 10 min) human IgG. PMN's from Tay-Sachs patients genetically deficient in Hex A activity readily incorporated exogenous Hex A provided in this fashion. PMN's exposed to enzyme-laden liposomes coated with aggregated IgG incorporated significantly more Hex A than when the enzyme was presented in uncoated liposomes or in liposomes coated with native IgG, which engages Fc receptors with less avidity. Free enzyme was not endocytized. Acquisition of specific Hex A isozyme activity by cells (determined by DEAE-cellulose chromatography) was not due to surface adsorption since cytochalasin B, which prevents phagocytosis but not surface adherence; blocked uptake. Incorporation of the isozyme by deficient cells was also demonstrated by starch gel electrophoresis, and ultrastructural studies showed that the immunoglobulin-coated, Hex A-containing liposomes were taken up into PMN lysosomes after membrane fusion. The studies indicate that liposomes coated with surface ligands may be used to introduce enzyme or other materials into deficient cells possessing appropriate surface receptors.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008064 Lipidoses Conditions characterized by abnormal lipid deposition due to disturbance in lipid metabolism, such as hereditary diseases involving lysosomal enzymes required for lipid breakdown. They are classified either by the enzyme defect or by the type of lipid involved. Lipidosis,Lipoidosis
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol

Related Publications

C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
March 1973, Birth defects original article series,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
April 1971, The Journal of pediatrics,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
February 1971, Israel journal of medical sciences,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
September 1971, Archives of ophthalmology (Chicago, Ill. : 1960),
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
June 1974, Clinica chimica acta; international journal of clinical chemistry,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
February 1981, The Tohoku journal of experimental medicine,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
July 1978, Clinical chemistry,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
February 1973, Nature,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
May 1975, Biochimica et biophysica acta,
C M Cohen, and G Weissmann, and S Hoffstein, and Y C Awasthi, and S K Srivastava
January 1998, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!