Immunolocalisation and expression of proteoglycan 4 (cartilage superficial zone proteoglycan) in tendon. 2002

Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Museum Avenue, CF10 3US, Cardiff, UK. reessgl@cardiff.ac.uk

Cartilage superficial zone protein/proteoglycan (SZP) or proteoglycan 4 (PRG4), has been demonstrated to have the potential for several distinct biological functions including cytoprotection, lubrication and matrix binding. In the present study, we have examined both the immunolocalisation and the mRNA expression pattern of PRG4 in tissue harvested from the compressed and tensional regions of young and mature bovine tendons. Immunohistochemical analyses, utilizing monoclonal antibody 3-A-4 which recognizes a conformational-dependent epitope on native PRG4, demonstrated that PRG4 is present predominantly at the surface of fibrocartilaginous regions of tendon, with the intensity of immunoreactivity in this region increasing with age. RT-PCR analyses revealed that the expression of PRG4 mRNA can be modulated by exposure to cytokines and growth factors. In addition, analyses of human pathological tendon revealed that PRG4 may also be expressed as an alternatively spliced form lacking exons which encode part of the N-terminal matrix-binding and cell-proliferative domain; however, it remains to be determined whether such splice variants are a feature of human tendon, regardless of disease state. Taken together, these data indicate that PRG4 may play an important cytoprotective role by preventing cellular adhesion to the tendon surface as well as providing lubrication during normal tendon function, in a manner complimentary to cartilage PRG4. Structural modifications to SZP, together with a reduction in synthesis during tendon inflammation with injury and disease may account for the formation of tendon adhesions and contribute to the overall dysfunction of the tissue.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013710 Tendons Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures. Endotenon,Epotenon,Tendons, Para-Articular,Tendons, Paraarticular,Endotenons,Epotenons,Para-Articular Tendon,Para-Articular Tendons,Paraarticular Tendon,Paraarticular Tendons,Tendon,Tendon, Para-Articular,Tendon, Paraarticular,Tendons, Para Articular
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse

Related Publications

Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
January 2020, European cells & materials,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
February 2009, Osteoarthritis and cartilage,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
August 2006, Osteoarthritis and cartilage,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
May 1994, Archives of biochemistry and biophysics,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
August 2001, Arthritis and rheumatism,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
May 2022, Inflammation and regeneration,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
May 2013, Biotechnology and bioengineering,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
September 2010, Acta biomaterialia,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
December 2011, Laboratory investigation; a journal of technical methods and pathology,
Sarah G Rees, and Janet R Davies, and Debbie Tudor, and Carl R Flannery, and Clare E Hughes, and Colin M Dent, and Bruce Caterson
May 2001, Pathologie-biologie,
Copied contents to your clipboard!