Fluoroquinolone-induced retinal degeneration in cats. 2002

Valerie Wiebe, and Patti Hamilton
Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine and The Veterinary Medical Teaching Hospital, University of California, Davis, CA 95616, USA.

Although the exact mechanism of fluoroquinolone-induced retinal degeneration in cats remains to be elucidated, it appears from the literature that a similar retinal degeneration can be reproduced from either direct intravitreal injection of high concentrations of drug or exposure to UVA light and drug in laboratory animals. (19,25) The fluoroquinolone molecular structure is also similar structurally to other drugs that are known to directly induce retinal degeneration, including the cinchona alkaloids and halogenated hydroquinolones. Experimental evidence suggests that both the parent compound and its breakdown products via metabolism and photodegradation are active inducers of retinal degeneration. (18,25) Development of toxicoses also appears to be dependent on the maximum concentration of active drug, metabolite, or both reaching the retina over time. (18) Evaluation of the literature suggests that risk factors predisposing cats to fluoroquinolone-induced retinal degeneration may include the following: 1) large doses or plasma concentrations of drug, 2) rapid IV infusion of the antibiotic, 3) prolonged courses of treatment, and 4) age. Theoretically, other risk factors may also be involved including the following: 1) prolonged exposure to UVA light while the antibiotic is being administered, 2) drug interactions, and 3) drug or metabolite accumulation from altered metabolism or reduced elimination. To date, there are no published reports suggesting that the dose of fluoroquinolones should be reduced in geriatric cats or those with renal or hepatic failure. However, accumulation of fluoroquinolone metabolites in dogs and of the parent compound in humans with decreased renal function has been reported. (8-10) In humans with decreased renal function has been reported. (8-10) humans, fluoroquinolone doses are typically decreased in response to the degree of renal impairment. (28) In general, all fluoroquinolone antibiotics should be reserved for severe or recurrent infections, and whenever possible their use should be based on results whenever possible their use should be based on results of culture and susceptibility tests. When indicated, the fluoroquinolones, including enrofloxacin, can be used with limited risk of developing retinal degeneration in cats, provided the manufacturer's guidelines are adhered to and dose reduction is considered in geriatric cats or those with renal impairment. Dosing on renal impairment. Dosing on exact body weight using split dosing (2.5 mg/kg, PO, q 12 h) and avoidance of rapid IV infusions, and drug interactions may help to reduce the risk of retinal degeneration in some cases. Furthermore, monitoring cats for mydriasis and avoidance of UVA light while undergoing treatment may also be of benefit. Further evaluation of the pharmacokinetics of enrofloxacin and the other fluoroquinolones is required in geriatric cats or those with mild to moderate renal or liver impairment to determine whether drug accumulation, elevated peak concentrations of drug, or both may be occurring in this subset of cats. Therapeutic monitoring of drug concentrations may not always be feasible because of time and cost, but renal panels with dose or frequency reduction in response to the degree of renal impairment and the site and severity of infection may help to reduce retinal toxicosis.

UI MeSH Term Description Entries
D012162 Retinal Degeneration A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304) Degeneration, Retinal,Degenerations, Retinal,Retinal Degenerations
D001766 Blindness The inability to see or the loss or absence of perception of visual stimuli. This condition may be the result of EYE DISEASES; OPTIC NERVE DISEASES; OPTIC CHIASM diseases; or BRAIN DISEASES affecting the VISUAL PATHWAYS or OCCIPITAL LOBE. Amaurosis,Bilateral Blindness,Blindness, Bilateral,Blindness, Legal,Blindness, Monocular,Blindness, Unilateral,Sudden Visual Loss,Unilateral Blindness,Blindness, Acquired,Blindness, Complete,Blindness, Hysterical,Blindness, Transient,Acquired Blindness,Amauroses,Bilateral Blindnesses,Complete Blindness,Hysterical Blindness,Legal Blindness,Monocular Blindness,Sudden Visual Losses,Transient Blindness,Visual Loss, Sudden
D002371 Cat Diseases Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used. Feline Diseases,Cat Disease,Disease, Cat,Disease, Feline,Diseases, Cat,Diseases, Feline,Feline Disease
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D000077422 Enrofloxacin A fluoroquinolone antibacterial and antimycoplasma agent that is used in veterinary practice. Bay Vp 2674,Bay-Vp-2674,Baytril,Endrofloxicin
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents

Related Publications

Valerie Wiebe, and Patti Hamilton
February 2011, Pharmacogenetics and genomics,
Valerie Wiebe, and Patti Hamilton
July 1986, Experimental eye research,
Valerie Wiebe, and Patti Hamilton
June 2001, Veterinary ophthalmology,
Valerie Wiebe, and Patti Hamilton
July 1977, Journal of the American Veterinary Medical Association,
Valerie Wiebe, and Patti Hamilton
March 1975, The American journal of pathology,
Valerie Wiebe, and Patti Hamilton
September 2022, Photodiagnosis and photodynamic therapy,
Valerie Wiebe, and Patti Hamilton
May 2008, Documenta ophthalmologica. Advances in ophthalmology,
Valerie Wiebe, and Patti Hamilton
January 1976, Investigative ophthalmology,
Valerie Wiebe, and Patti Hamilton
January 1968, Nihon ganka kiyo,
Valerie Wiebe, and Patti Hamilton
August 2006, Investigative ophthalmology & visual science,
Copied contents to your clipboard!