Survey of restriction-modification systems and transformation in Mannheimia haemolytica and Pasteurella trehalosi. 2003

A E Hill, and F A Lainson
Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Edinburgh, Scotland EH26 0PZ, UK. a.hill@hw.ac.uk

A significant obstacle to molecular studies of Mannheimia (Pasteurella) haemolytica, has been its resistance to genetic transformation. The lack of competence of many M. haemolytica strains has been attributed to the presence of restriction modification systems. In this study, representative strains of 12 M. haemolytica serotypes and four Pasteurella trehalosi serotypes were successfully transformed by electroporation using a recombinant vector derived from the native M. haemolytica A1 serotype plasmid pNSF2176. Transformation was achieved despite PCR-based evidence for the presence of genes encoding a type I restriction enzyme, phaI, and a type II restriction enzyme hsdM, in each of the M. haemolytica strains.

UI MeSH Term Description Entries
D010325 Pasteurella The oldest recognized genus of the family PASTEURELLACEAE. It consists of several species. Its organisms occur most frequently as coccobacillus or rod-shaped and are gram-negative, nonmotile, facultative anaerobes. Species of this genus are found in both animals and humans.
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D014169 Transformation, Bacterial The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE. Bacterial Transformation
D015280 DNA Restriction-Modification Enzymes Systems consisting of two enzymes, a modification methylase and a restriction endonuclease. They are closely related in their specificity and protect the DNA of a given bacterial species. The methylase adds methyl groups to adenine or cytosine residues in the same target sequence that constitutes the restriction enzyme binding site. The methylation renders the target site resistant to restriction, thereby protecting DNA against cleavage. DNA Restriction Modification Enzyme,DNA Restriction-Modification Enzyme,Restriction Modification System,Restriction-Modification System,Restriction-Modification Systems,DNA Restriction Modification Enzymes,Restriction Modification Systems,Enzyme, DNA Restriction-Modification,Enzymes, DNA Restriction-Modification,Modification System, Restriction,Modification Systems, Restriction,Restriction-Modification Enzyme, DNA,Restriction-Modification Enzymes, DNA,System, Restriction Modification,System, Restriction-Modification,Systems, Restriction Modification,Systems, Restriction-Modification
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016978 Mannheimia haemolytica A species of gram-negative, facultatively anaerobic, rod-shaped bacteria normally commensal in the flora of CATTLE and SHEEP. But under conditions of physical or PHYSIOLOGICAL STRESS, it can cause MASTITIS in sheep and SHIPPING FEVER or ENZOOTIC CALF PNEUMONIA in cattle. Its former name was Pasteurella haemolytica. Pasteurella haemolytica,Pasteurella hemolytica
D018274 Electroporation A technique in which electric pulses, in kilovolts per centimeter and of microsecond-to-millisecond duration, cause a loss of the semipermeability of CELL MEMBRANES, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. Depending on the dosage, the formation of openings in the cell membranes caused by the electric pulses may or may not be reversible. Electric Field-Mediated Cell Permeabilization,Irreversible Electroporation,Reversible Electroporation,Electropermeabilisation,Electric Field Mediated Cell Permeabilization,Electroporation, Irreversible,Electroporation, Reversible

Related Publications

A E Hill, and F A Lainson
May 1999, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
A E Hill, and F A Lainson
September 2001, Frontiers in bioscience : a journal and virtual library,
A E Hill, and F A Lainson
February 2010, Applied and environmental microbiology,
Copied contents to your clipboard!