Insect growth regulators and in vitro volatile fatty acid production. 1976

R W Barker, and G L Newton

Three insect growth regulators were tested for their effects on in vitro volatile fatty acid production. Each material was tested at 100 and 200 ppm of feed in a triplicated trial. At the concentrations used, there was a trend toward lowered acetate:propionate ratios with inconsistent effects on total volatile fatty acid production for all materials. Of the individual acids, only the relative production of valeric was affected significantly.

UI MeSH Term Description Entries
D007605 Juvenile Hormones Compounds, either natural or synthetic, which block development of the growing insect. Insect Growth Regulator,Insect Growth Regulators,Juvenile Hormone,Growth Regulators, Insect,Regulators, Insect Growth,Growth Regulator, Insect,Hormone, Juvenile,Hormones, Juvenile,Regulator, Insect Growth
D008297 Male Males
D008726 Methoprene Juvenile hormone analog and insect growth regulator used to control insects by disrupting metamorphosis. Has been effective in controlling mosquito larvae. Altosid,Altosid PS-10,ZR-515,Altosid PS 10,Altosid PS10,ZR 515,ZR515
D010671 Phenylurea Compounds Compounds that include the amino-N-phenylamide structure. Phenylcarbamides,Phenylurea Derivatives,Compounds, Phenylurea,Derivatives, Phenylurea
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005232 Fatty Acids, Volatile Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans. Fatty Acids, Short-Chain,Short-Chain Fatty Acid,Volatile Fatty Acid,Acid, Short-Chain Fatty,Acid, Volatile Fatty,Fatty Acid, Short-Chain,Fatty Acid, Volatile,Fatty Acids, Short Chain,Short Chain Fatty Acid,Short-Chain Fatty Acids,Volatile Fatty Acids
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D000475 Alkenes Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408) Alkene,Olefin,Olefins,Pentene,Pentenes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

R W Barker, and G L Newton
July 1976, Journal of dairy science,
R W Barker, and G L Newton
November 2007, Journal of dairy science,
R W Barker, and G L Newton
January 2006, Communications in agricultural and applied biological sciences,
R W Barker, and G L Newton
January 1973, Canadian journal of microbiology,
R W Barker, and G L Newton
March 1992, Journal of medical entomology,
R W Barker, and G L Newton
July 2009, Journal of agricultural and food chemistry,
R W Barker, and G L Newton
October 2013, Bioresource technology,
R W Barker, and G L Newton
February 1979, Applied and environmental microbiology,
Copied contents to your clipboard!