Effects of anisomycin on brain protein synthesis and passive avoidance learning in newborn chicks. 1976

R Bull, and E Ferrera, and F Orrego

The effects of anisomycin (ANM) on newborn chicks have been studied with respect to brain protein synthesis, growth, EEG, toxicity, and several passive avoidance learning tasks. It was found that intracerebral ANM (80 nmol) gave a maximum inhibition of brain protein synthesis of 30%, while a combination of subcutaneous (10 mumol; 53 mg/kg) plus intracerebral (80 nmol; 21 mug) ANM inhibited by 91% in the first 2 hr and by 75% in the subsequent 2 hr period. Cycloheximide (CXM) also in combined injections at the same doses as ANM, inhibited by 97% in the 4 hr that followed injection. However, all the CXM-injected chicks were dead by 18 hr, while the lethality of ANM did not differ from that of saline. ANM also did not affect EEG measured at 1, 3, 5, or 24 hr following the subcutaneous plus intracerebral injections, nor did ANM affect body or brain growth curves or brain protein accretion. In the learning experiments, animals were initially trained to peck at water-coated metal spheres (type A learning) or at water imbibed birdseed (types B and C learning) in less than 1 sec, and were exposed to the same lures treated with the aversant methylanthranilate (MeA) one day later on one occasion (types A and B learning) or exposed twice (type C learning) and tested for learning retention one day later. Learning criterion was set as failure to peck at the lure during the first 20 sec of presentation. If ANM was injected 1 hr prior to MeA exposure, large and highly significant memory deficits were found during the retention test, as compared with saline injected controls. No effect of ANM was seen, however, if it was injected one day after learning, indicating that it did not interfere with retrieval mechanisms. ANM also decreased the external manifestations of fear or displeasure that chicks express during retention testing. Such manifestations have a high correlation with pecking suppression (r = 0.88, P less than 0.001).

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

R Bull, and E Ferrera, and F Orrego
October 1989, Brain research. Developmental brain research,
R Bull, and E Ferrera, and F Orrego
December 1981, Physiology & behavior,
R Bull, and E Ferrera, and F Orrego
April 1981, Behavioral and neural biology,
R Bull, and E Ferrera, and F Orrego
March 2007, Behavioural brain research,
R Bull, and E Ferrera, and F Orrego
January 2009, Biological trace element research,
R Bull, and E Ferrera, and F Orrego
October 1972, Physiology & behavior,
R Bull, and E Ferrera, and F Orrego
August 1976, Psychopharmacology,
R Bull, and E Ferrera, and F Orrego
April 1985, Journal of neurochemistry,
R Bull, and E Ferrera, and F Orrego
January 1981, Experimental aging research,
Copied contents to your clipboard!