Dynamin-like protein 1 is involved in peroxisomal fission. 2003

Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str. 5, Germany.

The mammalian dynamin-like protein 1 (DLP1), a member of the dynamin family of large GTPases, possesses mechanochemical properties known to constrict and tubulate membranes. In this study, we have combined two experimental approaches, induction of peroxisome proliferation by Pex11pbeta and expression of dominant-negative mutants, to test whether DLP1 plays a role in peroxisomal growth and division. We were able to localize DLP1 in spots on tubular peroxisomes in HepG2 cells. In addition, immunoblot analysis revealed the presence of DLP1 in highly purified peroxisomal fractions from rat liver and an increase of DLP1 after treatment of rats with the peroxisome proliferator bezafibrate. Expression of a dominant negative DLP1 mutant deficient in GTP hydrolysis (K38A) either alone or in combination with Pex11pbeta caused the appearance of tubular peroxisomes but had no influence on their intracellular distribution. In co-expressing cells, the formation of tubulo-reticular networks of peroxisomes was promoted, and peroxisomal division was completely inhibited. These findings were confirmed by silencing of DLP1 using siRNA. We propose a direct role for the dynamin-like protein DLP1 in peroxisomal fission and in the maintenance of peroxisomal morphology in mammalian cells.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine
D020675 Peroxisomes Microbodies which occur in animal and plant cells and in certain fungi and protozoa. They contain peroxidase, catalase, and allied enzymes. (From Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2nd ed) Peroxisome

Related Publications

Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
August 2019, Nature communications,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
December 2018, Nature communications,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
February 2004, Plant & cell physiology,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
July 1998, The Journal of cell biology,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
November 1999, Journal of cell science,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
August 2004, Journal of cell science,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
October 1998, Biochemical and biophysical research communications,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
March 2022, Bioengineered,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
February 1998, The EMBO journal,
Annett Koch, and Meinolf Thiemann, and Markus Grabenbauer, and Yisang Yoon, and Mark A McNiven, and Michael Schrader
April 2002, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!