Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic beta cells. 2003

Guoxin Kang, and George G Holz
Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.

Functional coupling between Ca(2+)-induced Ca(2+) release (CICR) and quantal exocytosis in 5-hydroxytryptamine-loaded INS-1 beta cells was assessed through the use of carbon fibre amperometry in combination with Fura-2. CICR was evoked by the glucagon-like-peptide-1 (GLP-1) receptor agonist exendin-4 (Ex-4) and was accompanied by quantal secretory events appearing as amperometric current spikes time-locked to the increase of [Ca(2+)](i). The action of Ex-4 was reproduced by treatment with caffeine, and the source of Ca(2+) serving as a stimulus for exocytosis originated from ryanodine and thapsigargin-sensitive Ca(2+) stores. Two distinct patterns of exocytosis occurred within 5 s following the initiation of CICR. Non-summating exocytosis (NS-type) was defined as multiple asynchronous current spikes, and the half-height duration of each spike was 12-48 ms. Summating exocytosis (S-type) was defined as a cluster of spikes. It generated a macroscopic current, the half-height duration of which was 243-682 ms. The release charge of S-type exocytosis was 3.2-fold greater than that of NS-type when measured 2 s following the initiation of secretion. NS-type exocytosis was observed frequently under conditions in which the basal Ca(2+) concentration ([Ca(2+)](B)) was low (75-150 nM), whereas S-type exocytosis predominated under conditions in which the [Ca(2+)](B) was elevated (200-275 nM). Depolarization-induced Ca(2+) influx triggered NS-type exocytosis in most cells tested, irrespective of [Ca(2+)](B). It is concluded that CICR is a highly effective stimulus for exocytosis in INS-1 cells. The increase of [Ca(2+)](i) that accompanies CICR stimulates the asynchronous release of a small number of secretory granules under conditions of low [Ca(2+)](B). When [Ca(2+)](B) is slightly elevated, CICR targets a much larger pool of secretory granules that undergo summating exocytosis. The transition from NS-type to S-type exocytosis may represent an amplification mechanism for Ca(2+)-dependent exocytosis.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo

Related Publications

Guoxin Kang, and George G Holz
June 2009, World journal of gastroenterology,
Guoxin Kang, and George G Holz
July 2006, Acta pharmacologica Sinica,
Guoxin Kang, and George G Holz
February 1988, FEBS letters,
Guoxin Kang, and George G Holz
December 1987, The Biochemical journal,
Guoxin Kang, and George G Holz
January 1999, Proceedings of the National Academy of Sciences of the United States of America,
Guoxin Kang, and George G Holz
January 2020, Nature metabolism,
Guoxin Kang, and George G Holz
April 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Guoxin Kang, and George G Holz
November 1995, Diabetes,
Copied contents to your clipboard!