Correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effects of Mg2+, KCl, troponin I, and troponin C. 1975

B L Eaton, and D R Kominz, and E Eisenberg

When stoichiometric amounts of tropomyosin (TM) are bound to F-actin in the presence of 2 mM ATP, the MG2+-activated acto-heavy meromyosin (HMM) ATPase is inhibited by about 60% in 5 mM MgCl2-30 mM KCl. If the concentration of MgCl2 is reduced to 1 mM, the inhibition disappears because TM no longer binds to F-actin. Increasing the concentration of KCl to 100 mM restores both the binding and the inhibition. Thus, the binding of TM alone to F-actin causes significant inhibition of the ATPase provided that the HMM is saturated with ATP. (When the HMM is not saturated, TM activates the ATPase). When TM alone can bind stoichiometrically to F-actin, addition of troponin I (TN-I) increases the inhibition from 60% to about 85%, but the TM binding to F-actin is not affected. Under conditions such that TM alone neither inhibits the acto-HMM ATPase nor binds to F-actin, the inhibition caused by TN-I plus TM still approaches 100%. Direct binding studies under these conditions show that TN-I induces binding between TM and F-actin. A dual role for TN-I is proposed: first, TN-I can induce TM to bind to F-actin, causing inhibition of the ATPase; and second, TN-I can itself enhance the inhibition of the ATPase in a cooperative manner. The addition of TN-C in the absence of CA2+ has only a limited effect on the first role, but seems to be able to block completely the cooperative inhibition caused by TN-I such that the residual inhibition is a function only of the TM which remains bound.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

B L Eaton, and D R Kominz, and E Eisenberg
June 1972, Biochimica et biophysica acta,
B L Eaton, and D R Kominz, and E Eisenberg
January 1980, The Journal of biological chemistry,
B L Eaton, and D R Kominz, and E Eisenberg
May 1989, Biological chemistry Hoppe-Seyler,
B L Eaton, and D R Kominz, and E Eisenberg
December 1972, Biochimica et biophysica acta,
B L Eaton, and D R Kominz, and E Eisenberg
April 1986, The Journal of biological chemistry,
B L Eaton, and D R Kominz, and E Eisenberg
January 1987, FEBS letters,
B L Eaton, and D R Kominz, and E Eisenberg
August 1982, The Journal of biological chemistry,
Copied contents to your clipboard!