Development and function of the human fetal adrenal cortex. 2002

Dominique Langlois, and J Yuan Li, and José M Saez
INSERM U-369, Faculté de Médecine Laennec, Université Claude Bernard Lyon, Lyon, France.

The development and function of the primate adrenal cortex are characterized by rapid growth, high steroidogenic activity, and a particular morphological appearance. The fetal adrenal glands grow rapidly and exponentially and at term are similar in weight to adult adrenals. From birth to 1 year their mass is reduced as they undergo a process of differentiation. Growth then remains slow until age 7 years. Thereafter, growth accelerates and the adrenals reach adult weight by the end of puberty. In the first trimester of gestation, fetal adrenal growth is thought to be independent of adrenocorticotropic hormone (ACTH), but after 15 weeks, ACTH is absolutely required for normal morphological and functional development. Other factors of fetal and/or placental origin, acting independently of or in conjunction with ACTH, are also required. Basic fibroblast growth factor, epidermal growth factor/transforming growth factor beta, and insulin-like growth factor (IGF)-I and -II, all acting in an autocrine and/or paracrine fashion, have been postulated to stimulate fetal adrenal cell proliferation. Corticotropin-releasing hormone may also play an important role in primate fetal adrenal function, primarily at the end of gestation. Finally, the estrogens are also important in the development of the pituitary-adrenal axis in primates.

UI MeSH Term Description Entries
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D019314 Dehydroepiandrosterone Sulfate The circulating form of a major C19 steroid produced primarily by the ADRENAL CORTEX. DHEA sulfate serves as a precursor for TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. DHEA Sulfate,DHA Sulfate,Dehydroisoandrosterone Sulfate,Prasterone Sulfate,Sulfate, DHA,Sulfate, DHEA,Sulfate, Dehydroepiandrosterone,Sulfate, Dehydroisoandrosterone,Sulfate, Prasterone

Related Publications

Dominique Langlois, and J Yuan Li, and José M Saez
January 1976, Duodecim; laaketieteellinen aikakauskirja,
Dominique Langlois, and J Yuan Li, and José M Saez
November 1972, Deutsche medizinische Wochenschrift (1946),
Dominique Langlois, and J Yuan Li, and José M Saez
February 1973, Horumon to rinsho. Clinical endocrinology,
Dominique Langlois, and J Yuan Li, and José M Saez
January 1979, Contributions to gynecology and obstetrics,
Dominique Langlois, and J Yuan Li, and José M Saez
March 1987, Bulletin de l'Association des anatomistes,
Dominique Langlois, and J Yuan Li, and José M Saez
June 2011, Endocrine reviews,
Dominique Langlois, and J Yuan Li, and José M Saez
February 2023, Reviews in endocrine & metabolic disorders,
Dominique Langlois, and J Yuan Li, and José M Saez
January 1981, Ciba Foundation symposium,
Dominique Langlois, and J Yuan Li, and José M Saez
January 1953, Archiv fur Gynakologie,
Dominique Langlois, and J Yuan Li, and José M Saez
May 1977, Journal of steroid biochemistry,
Copied contents to your clipboard!