Monoaminergic mechanisms of stimulation-produced analgesia. 1975

H Akil, and J C Liebeskind

The roles played by the cerebral monoamines (dopamine, noradrenaline and serotonin) in stimulation-produced analgesia (SPA) have been investigated in the rat employing the tail flick test. SPA was elicited through bipolar electrodes chronically implanted in the mesencephalic periaqeductal gray matter, an area previously shown to yield potent and reliable analgesic effects. Four approaches were used to alter transmission in monoamine pathways. (1) Depletion of monoamines by administration of tetrabenazine (TBZ), p-chlorophenylalanine (PCPA), alpha-methyl-para-tyrosine (AMPT), or disulfiram. (2) Replacement of depleted monoamine stores by appropiate precursors (5-HTP or L-DOPA) in combination with a peripheral decarboxylase inhibitor. (3) Potentiation of monoamine systems by administration of precursors to previously untreated animals or by administration of a dopamine receptor stimulator, apomorphine. (4) Blockade of catecholamine receptors by haloperidol or of dopamine receptors by pimozide. These four approaches yielded internally consistent results. Depletion of all 3 monoamines (TBZ) led to a powerful inhibition of SPA. Original levels of SPA were restored by injection of either 5-HTP or L-DOPA. Specific depletion of serotonin (PCPA) caused a reduction in SPA, whereas elevation of serotonin levels (5-HTP) caused an increase in SPA. Dopamine receptor blockade (pimozide) decreased SPA, whereas the precursor (L-DOPA) and a dopamine receptor stimulator (apomorphine) increased SPA. On the other hand, selective depletion of noradrenaline (disulfiram) caused an increase in SPA; and at a time when noradrenaline levels are depressed and dopamine levels are elevated (AMPT + L-DOPA), SPA was seen to be particularly enhanced. thus, dopamine and serotonin appear to facilitate SPA, whereas noradrenaline appears to inhibit it. When a general catecholamine receptor blocker (haloperidol) was employed, SPA was diminished, suggesting that the influence of dopamine in SPA is greater than that of noradrenaline. Most of the drugs used in this study significantly altered SPA at doses which left baseline tail flick latency unaffected. It would appear, therefore, that SPA has a neural substrate at least partly independent of that underlying baseline pain responsiveness. Consideration is given to various ascending and descending monoamine system as possible component paths in this neural substrate of SPA. Finally, the present results are discussed in relation to studies by others on the site and mechanism of morphine's analgesic action. Some striking parallels between SPA and morphine analgesia are noted. These suggest the existence of a common pain-inhibitory system in the brain activated by morphine and by focal electrical stimulation.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008297 Male Males
D008781 Methyltyrosines A group of compounds that are methyl derivatives of the amino acid TYROSINE.
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010134 Fenclonine A selective and irreversible inhibitor of tryptophan hydroxylase, a rate-limiting enzyme in the biosynthesis of serotonin (5-HYDROXYTRYPTAMINE). Fenclonine acts pharmacologically to deplete endogenous levels of serotonin. p-Chlorophenylalanine,para-Chlorophenylalanine,CP-10,188,DL-3-(4-Chlorophenyl)alanine,Fenclonin,Fenclonine (L)-Isomer,Fenclonine Hydrobromide,Fenclonine Hydrochloride,Fenclonine, (D)-Isomer,Hydrobromide, Fenclonine,Hydrochloride, Fenclonine,para Chlorophenylalanine
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010868 Pimozide A diphenylbutylpiperidine that is effective as an antipsychotic agent and as an alternative to HALOPERIDOL for the suppression of vocal and motor tics in patients with Tourette syndrome. Although the precise mechanism of action is unknown, blockade of postsynaptic dopamine receptors has been postulated. (From AMA Drug Evaluations Annual, 1994, p403) Antalon,Orap,Orap forte,R-6238,R6238
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

H Akil, and J C Liebeskind
January 1982, Journal of neural transmission,
H Akil, and J C Liebeskind
January 1976, Mayo Clinic proceedings,
H Akil, and J C Liebeskind
July 1975, Physiology & behavior,
H Akil, and J C Liebeskind
August 1982, The Indian journal of medical research,
H Akil, and J C Liebeskind
January 1985, Journal of neural transmission,
H Akil, and J C Liebeskind
July 1985, Neuropharmacology,
H Akil, and J C Liebeskind
January 1986, Annals of the New York Academy of Sciences,
H Akil, and J C Liebeskind
January 1988, Progress in brain research,
Copied contents to your clipboard!