Uptake of macrominerals and trace elements by the cyanobacterium Spirulina platensis (Arthrospira platensis PCC 8005) under photoautotrophic conditions: culture medium optimization. 2003

Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
LGCB, Université Blaise Pascal, CUST, 24 avenue des Landais, BP 206, 63174 Aubière Cédex, France.

Uptake rates of macrominerals and trace elements were characterized in batch and continuous cultures of Spirulina platensis under photoautotropic conditions. The values of yield coefficients were determined using inductively coupled plasma emission spectroscopy (ICP-ES). Further simplifications of culture medium proved possible, mainly in the trace element solutions; concentrations of some elements were lowered and trace elements B, Mo, V, Cr, Ni, Co, W, and Ti were removed.

UI MeSH Term Description Entries
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008903 Minerals Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Mineral
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D011786 Quality Control A system for verifying and maintaining a desired level of quality in a product or process by careful planning, use of proper equipment, continued inspection, and corrective action as required. (Random House Unabridged Dictionary, 2d ed) Control, Quality,Controls, Quality,Quality Controls
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry

Related Publications

Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
January 2014, PloS one,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
May 2010, Journal of bacteriology,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
February 2024, Microorganisms,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
April 2015, MicrobiologyOpen,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
July 2018, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS),
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
January 2003, Photosynthesis research,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
January 2018, PeerJ,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
March 2000, FEMS microbiology letters,
Guillaume Cogne, and Bernd Lehmann, and Claude-Gilles Dussap, and Jean-Bernard Gros
April 2024, International journal of molecular sciences,
Copied contents to your clipboard!