Immunosensitization of resistant human tumor cells to cytotoxicity by tumor infiltrating lymphocytes. 2003

Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
Department of Psychiatry, Neuropsychiatric Institute, Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, CA 90095-1761, USA.

Most anti-cancer therapies induce apoptotic cell death, but a major barrier to long-term cancer treatments is the generation of apoptosis-resistant tumor cells. Tumor cells that become resistant to one therapy are usually cross-resistant to subsequent therapies, including those with different cellular/molecular targets, suggesting that resistant tumor cells acquire modifications of the general apoptotic pathway. Most solid tumors are characterized by infiltration of lymphocytes (tumor infiltrating lymphocytes, TIL), which may serve as a basis for new strategies to generate tumor specific lymphocytes. However, TIL frequently are unable to kill autologous tumor cells suggesting that they are anergic/tolerant. It is possible that the TIL are functional but the tumor cells are resistant to TIL-mediated apoptotic pathways. Previous findings revealed that resistant tumor cells can be sensitized with cytokines or subtoxic concentrations of chemotherapeutic drugs and restore killing by cytotoxic lymphocytes. In this study, we examined whether TIL can kill autologous and allogeneic tumor cells following sensitization with chemotherapeutic drugs. Renal and prostate cancer-derived TIL were cytotoxic to chemosensitized resistant tumor cells. Killing by TIL was found to be perforin-dependent and perforin-independent. These findings demonstrate that combination drug and immunotherapy may be able to overcome tumor cell resistance to killing by TIL. Further, in vivo sensitization of drug-resistant tumor cells by subtoxic doses of sensitizing chemotherapeutic drugs may result in tumor regression by the host immune system.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D002292 Carcinoma, Renal Cell A heterogeneous group of sporadic or hereditary carcinoma derived from cells of the KIDNEYS. There are several subtypes including the clear cells, the papillary, the chromophobe, the collecting duct, the spindle cells (sarcomatoid), or mixed cell-type carcinoma. Adenocarcinoma, Renal Cell,Carcinoma, Hypernephroid,Grawitz Tumor,Hypernephroma,Renal Carcinoma,Adenocarcinoma Of Kidney,Adenocarcinoma, Renal,Chromophil Renal Cell Carcinoma,Chromophobe Renal Cell Carcinoma,Clear Cell Renal Carcinoma,Clear Cell Renal Cell Carcinoma,Collecting Duct Carcinoma,Collecting Duct Carcinoma (Kidney),Collecting Duct Carcinoma of the Kidney,Nephroid Carcinoma,Papillary Renal Cell Carcinoma,Renal Cell Cancer,Renal Cell Carcinoma,Renal Cell Carcinoma, Papillary,Renal Collecting Duct Carcinoma,Sarcomatoid Renal Cell Carcinoma,Adenocarcinoma Of Kidneys,Adenocarcinomas, Renal Cell,Cancer, Renal Cell,Carcinoma, Collecting Duct,Carcinoma, Collecting Duct (Kidney),Carcinoma, Nephroid,Carcinoma, Renal,Carcinomas, Collecting Duct,Carcinomas, Collecting Duct (Kidney),Carcinomas, Renal Cell,Collecting Duct Carcinomas,Collecting Duct Carcinomas (Kidney),Hypernephroid Carcinoma,Hypernephroid Carcinomas,Hypernephromas,Kidney, Adenocarcinoma Of,Nephroid Carcinomas,Renal Adenocarcinoma,Renal Adenocarcinomas,Renal Carcinomas,Renal Cell Adenocarcinoma,Renal Cell Adenocarcinomas,Renal Cell Cancers,Renal Cell Carcinomas,Tumor, Grawitz
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum

Related Publications

Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
November 1991, Japanese journal of cancer research : Gann,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
September 1991, International journal of cancer,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
January 1991, International journal of immunopharmacology,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
October 1991, Journal of immunotherapy : official journal of the Society for Biological Therapy,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
May 2023, Cancer research communications,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
September 1991, Japanese journal of cancer research : Gann,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
January 1992, Cancer immunology, immunotherapy : CII,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
May 1989, Journal of immunology (Baltimore, Md. : 1950),
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
January 1987, Cancer research,
Patrick Frost, and Randy Caliliw, and Arie Belldegrun, and Benjamin Bonavida
January 1988, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!