Upper airway muscles awake and asleep. 2002

Frédéric Sériès
Unité de Recherche, Centre de Pneumologie, Hôpital et Université Laval, 2725 Chemin Sainte Foy, Canada. Frederic.Series@med.ulaval.ca

Upper airway (UA) structures are involved in different respiratory and non-respiratory tasks. The coordination of agonist and antagonist UA dilators is responsible for their mechanical function and their ability to maintain UA patency throughout the respiratory cycle. The activity of these muscles is linked with central respiratory activity but also depends on UA pressure changes and is greatly influenced by sleep. UA muscles are involved in determining UA resistance and stability (i.e. closing pressure), and the effect of sleep on these variables may be accounted for by its effect on tonic and phasic skeletal muscle activities. The mechanical effects of UA dilator contraction also depend on their physiological properties (capacity to generate tension in vitro, activity of the anaerobic enzymatic pathway, histo-chemical characteristics that may differ between subjects who may or may not have sleep-related obstructive breathing disorders). These characteristics may represent an adaptive process to an increased resistive loading of these muscles. The apparent discrepancy between the occurrence of UA closure and an increased capacity to generate tension in sleep apnea patients may be due to a reduction in the effectiveness of UA muscle contraction in these patients; such an increase in tissue stiffness could be accounted for by peri-muscular tissue characteristics. Therefore, understanding of UA muscle physiological characteristics should take into account its capacity for force production and its mechanical coupling with other UA tissues. Important research goals for the future will be to integrate these issues with other physiological features of the disease, such as UA size and dimension, histological characteristics of UA tissues and the effect of sleep on muscle function. Such integration will better inform understanding of the role of pharyngeal UA muscles in the pathophysiology of the sleep apnea/hypopnea syndrome.

UI MeSH Term Description Entries
D010609 Pharyngeal Muscles The muscles of the PHARYNX are voluntary muscles arranged in two layers. The external circular layer consists of three constrictors (superior, middle, and inferior). The internal longitudinal layer consists of the palatopharyngeus, the salpingopharyngeus, and the stylopharyngeus. During swallowing, the outer layer constricts the pharyngeal wall and the inner layer elevates pharynx and LARYNX. Palatopharyngeus,Muscles of Pharynx,Palatopharyngeal Muscle,Salpingopharyngeus,Stylopharyngeus,Velopharyngeal Muscle,Muscle, Palatopharyngeal,Muscle, Pharyngeal,Muscle, Velopharyngeal,Muscles, Pharyngeal,Pharyngeal Muscle,Pharynx Muscle,Pharynx Muscles
D010614 Pharynx A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx). Throat,Pharynxs,Throats
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit
D014851 Wakefulness A state in which there is an enhanced potential for sensitivity and an efficient responsiveness to external stimuli. Wakefulnesses
D020181 Sleep Apnea, Obstructive A disorder characterized by recurrent apneas during sleep despite persistent respiratory efforts. It is due to upper airway obstruction. The respiratory pauses may induce HYPERCAPNIA or HYPOXIA. Cardiac arrhythmias and elevation of systemic and pulmonary arterial pressures may occur. Frequent partial arousals occur throughout sleep, resulting in relative SLEEP DEPRIVATION and daytime tiredness. Associated conditions include OBESITY; ACROMEGALY; MYXEDEMA; micrognathia; MYOTONIC DYSTROPHY; adenotonsilar dystrophy; and NEUROMUSCULAR DISEASES. (From Adams et al., Principles of Neurology, 6th ed, p395) Obstructive Sleep Apnea,Upper Airway Resistance Sleep Apnea Syndrome,Apnea, Obstructive Sleep,OSAHS,Obstructive Sleep Apnea Syndrome,Sleep Apnea Hypopnea Syndrome,Sleep Apnea Syndrome, Obstructive,Syndrome, Obstructive Sleep Apnea,Syndrome, Sleep Apnea, Obstructive,Syndrome, Upper Airway Resistance, Sleep Apnea,Apneas, Obstructive Sleep,Obstructive Sleep Apneas,Sleep Apneas, Obstructive

Related Publications

Frédéric Sériès
March 2010, British journal of anaesthesia,
Frédéric Sériès
May 2006, Der Anaesthesist,
Frédéric Sériès
July 2008, Nature neuroscience,
Frédéric Sériès
August 2020, Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery,
Frédéric Sériès
February 2010, The Annals of thoracic surgery,
Frédéric Sériès
June 1986, The British journal of psychiatry : the journal of mental science,
Frédéric Sériès
December 2002, Anaesthesia,
Frédéric Sériès
February 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
Frédéric Sériès
January 2017, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Copied contents to your clipboard!