Late effects of therapeutic irradiation on the skeleton and bone marrow. 1976

R G Parker, and H C Berry

Sequelae in the skeleton and bone marrow can be important late consequences for survivors following radiation therapy of cancer. Skeletal sequelae of radiation therapy often are predictable, although they may not be avoidable. The growth suppressive effects of therapeutic irradiation may occur in any bone, but most often are noted in the spine after doses in excess of 2000 rads. Mature bone and cartilage may be devitalized by irradiation without clinical consequence until stressed. Although malignant tumors may arise in irradiated bone and cartilage, the risk is minimal and is readily accepted in modern-day radiation oncology. Radiation-induced suppression of bone marrow function usually is of immediate rather than late consequence; however, functional recovery after therapeutic irradiation, while prolonged, is more complete than formerly thought. Leukemia rarely develops secondary to therapeutic irradiation.

UI MeSH Term Description Entries
D007953 Leukemia, Radiation-Induced Leukemia produced by exposure to IONIZING RADIATION or NON-IONIZING RADIATION. Radiation-Induced Leukemia,Leukemia, Radiation Induced,Leukemias, Radiation-Induced,Radiation Induced Leukemia,Radiation-Induced Leukemias
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D011832 Radiation Injuries Harmful effects of non-experimental exposure to ionizing or non-ionizing radiation in VERTEBRATES. Radiation Sickness,Radiation Syndrome,Injuries, Radiation,Injury, Radiation,Radiation Injury,Radiation Sicknesses,Radiation Syndromes,Sickness, Radiation,Sicknesses, Radiation,Syndrome, Radiation,Syndromes, Radiation
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001859 Bone Neoplasms Tumors or cancer located in bone tissue or specific BONES. Bone Cancer,Cancer of Bone,Cancer of the Bone,Neoplasms, Bone,Bone Neoplasm,Neoplasm, Bone

Related Publications

R G Parker, and H C Berry
September 1964, Cancer,
R G Parker, and H C Berry
January 1977, International journal of radiation oncology, biology, physics,
R G Parker, and H C Berry
January 1997, Cancer radiotherapie : journal de la Societe francaise de radiotherapie oncologique,
R G Parker, and H C Berry
January 1990, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
R G Parker, and H C Berry
January 2019, Frontiers in endocrinology,
R G Parker, and H C Berry
October 1964, Radiation research,
R G Parker, and H C Berry
January 1967, Radiobiologia, radiotherapia,
R G Parker, and H C Berry
January 1966, University of Michigan Medical Center journal,
Copied contents to your clipboard!