Autocrine growth factor production by fetal, keloid, and normal dermal fibroblasts. 2003
OBJECTIVE To evaluate differences in fibroblast autocrine growth factor production by human fetal, keloid, and normal adult dermal fibroblasts. METHODS Serum-free cell lines of fetal, keloid, and normal adult dermal fibroblasts were established. Cell counts were performed and supernatants collected at 4, 24, and 72 hours. Cell-free supernatants were quantitatively assayed for transforming growth factor beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF). RESULTS Population doubling times for fetal, keloid, and normal adult fibroblasts were 120.0, 88.1, and 128.4 hours, respectively. Differences in population doubling times did not reach statistical significance. Statistically significant differences between TGF-beta1 levels from fetal and normal adult fibroblasts were seen at 24 and 72 hours. Significant differences between TGF-beta1 levels from keloid and normal adult fibroblasts were also seen at 24 and 72 hours. Fetal fibroblasts demonstrated higher levels of bFGF than normal adult fibroblasts at each time point, but these differences were not statistically significant. No significant differences were observed between keloid and normal adult bFGF levels. CONCLUSIONS Both fetal and keloid fibroblasts produce significantly more TGF-beta1 than normal adult fibroblasts. Our data and the data of others suggest that fetal fibroblasts produce more bFGF than adult fibroblasts. The serum-free model we describe can be used to quantitatively measure autocrine growth factor production by cells that underlie clinically different types of wound healing. This model provides information that may allow us to better treat and prevent undesirable scarring.