[Establishment and implication of an assay for high density lipoprotein phospholipids in human serum]. 2001

D Fang, and B Liu, and R Gong
Apolipoprotein Research Unit, School of Basic Medical Sciences, WCUMS, Chengdu 610041, China.

OBJECTIVE To develop an assay for high density lipoprotein phospholipids in human serum based on ascorbutate reduction method. METHODS HDLs were separated from apolipoprotein B-containing lipoproteins by precipitation of phosphotungstic acid and magnesium chloride. Phospholipids of HDL were extracted by ethanol/ether, and dried. After the dried phospholipids were digested by sulphuric acid and perchloric acid, the color was developed by adding ammonium molybdate in ascorbutate. The levels of high density lipoprotein phospholipids (HDL-PL) were measured by spectrophotometry at 700 nm. RESULTS The coefficients of variation (CV) were 3.6% and 3.7% within two batches of assays. Recovery of isolated HDL-PL added to serum ranged from 98% to 107%, averagely 103%. The established assay for human serum HDL-PL was used to measure the serum levels of 30 hypercholesterolemic subjects, 30 hypertriglyceridemic subjects, 30 combined hyperlipidemic subjects, and 30 normolipidemic subjects. The hypertriglyceridemic subjects had lower HDL-PL level than normolipidemic subjects and hypercholesterolemic subjects (The P values are 0.005 and 0.007 respectively). CONCLUSIONS A simple and specific method for assay of HDL-phos-pholipids in human serum has been developed. The above data collected by the use of this method demonstrate the closer relationship between human HDL-PL metabolism and triglyceride metabolism, suggesting that lower HDL-PL level might serve as an index in the assay for type IV hyperlipidemia.

UI MeSH Term Description Entries
D006953 Hyperlipoproteinemia Type IV A hypertriglyceridemia disorder, often with autosomal dominant inheritance. It is characterized by the persistent elevations of plasma TRIGLYCERIDES, endogenously synthesized and contained predominantly in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). In contrast, the plasma CHOLESTEROL and PHOSPHOLIPIDS usually remain within normal limits. Hyperprebetalipoproteinemia,Hypertriglyceridemia, Familial,Carbohydrate Inducible Hyperlipemia,Carbohydrate-Inducible Hyperlipemia,Familial Hyperlipoproteinemia Type 4,Familial Type IV Hyperlipoproteinemia,Hyper prebeta lipoproteinemia,Hyperlipoproteinemia, Type IV,Carbohydrate Inducible Hyperlipemias,Carbohydrate-Inducible Hyperlipemias,Familial Hypertriglyceridemia,Hyperlipemia, Carbohydrate Inducible,Hyperlipemia, Carbohydrate-Inducible,Hyperlipemias, Carbohydrate Inducible,Hyperlipemias, Carbohydrate-Inducible,Hyperlipoproteinemias, Type IV,Inducible Hyperlipemia, Carbohydrate,Inducible Hyperlipemias, Carbohydrate,Type IV Hyperlipoproteinemia,Type IV Hyperlipoproteinemias,Type IV, Hyperlipoproteinemia
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic

Related Publications

D Fang, and B Liu, and R Gong
August 1974, Chemistry and physics of lipids,
D Fang, and B Liu, and R Gong
August 1980, Clinical chemistry,
D Fang, and B Liu, and R Gong
February 1967, The Journal of biological chemistry,
D Fang, and B Liu, and R Gong
April 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
D Fang, and B Liu, and R Gong
October 2014, Clinical nutrition (Edinburgh, Scotland),
D Fang, and B Liu, and R Gong
July 1988, The Tohoku journal of experimental medicine,
D Fang, and B Liu, and R Gong
March 1966, Journal of lipid research,
D Fang, and B Liu, and R Gong
November 1985, Clinical chemistry,
Copied contents to your clipboard!