Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation. 1975

H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski

1. The uptakes of Pi and serine by whole cells of mutant strains of Escherichia coli K12, grown under both aerobic and anaerobic conditions, were studied. 2. Uptake by aerobic cells was low in a ubiquinone-less mutant but normal in two mutant strains unable to couple phosphorylation to electron transport. 3. One of these uncoupled strains, carrying the unc-405 allele, does not form a membrane-bound Mg2+-stimulated adenosine triphosphatase aggregate, and it is concluded that the Mg2+-stimulated adenosine triphosphatase does not serve a structural role in the aerobic active transport of Pi or serine. 4. The other uncoupled strain, in which aerobic uptake is unaffected, carries a mutation in the uncB gene, thus distinguishing this gene from the etc gene, previously shown to be concerned with the coupling of electron transport to active transport. 5. The uptakes of Pi and serine by anaerobic cells were normal in the ubiquinone-less mutant, but defective in both the uncoupled strains. 6. The uptake of Pi and serine by anaerobic cells of the uncB mutant could be increased by the addition of fumarate to the uptake medium. The unc-405 mutant, however, required the addition of fumarate for growth and for uptake. 7. The uncB mutant, unlike the unc-405 mutant, is able to grow anaerobically in a minimal medium with glucose as sole source of carbon. Similarly a strain carrying a mutation in the frd gene, which is the structural gene for the enzyme fumarate reductase, is able to grow anaerobically in a glucose-minimal medium. However, a mutant strain carrying mutations in both the uncB and frd genes resembles the unc-405 mutant in not being able to grow under these conditions.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q

Related Publications

H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
August 1973, European journal of biochemistry,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
January 1973, Essays in biochemistry,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
September 1975, Molecular & general genetics : MGG,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
August 1962, Comptes rendus hebdomadaires des seances de l'Academie des sciences,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
May 1975, European journal of biochemistry,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
January 1981, Molecular & general genetics : MGG,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
October 1985, Journal of general microbiology,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
January 1983, Molecular & general genetics : MGG,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
July 1976, European journal of biochemistry,
H Rosenberg, and G B Cox, and J D Butlin, and S J Gutowski
March 1980, Journal of general microbiology,
Copied contents to your clipboard!