Oscillations in ciliary beat frequency and intracellular calcium concentration in rabbit tracheal epithelial cells induced by ATP. 2003

Luo Zhang, and Michael J Sanderson
Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.

To investigate how Ca(2+) regulates airway ciliary activity, changes in ciliary beat frequency (CBF) and intracellular calcium concentration ([Ca(2+)](i)) of rabbit tracheal ciliated cells, in response to ATP, were simultaneously quantified with high-speed phase-contrast and fast fluorescence imaging. [ATP]<or= 1 microM induced an increase in [Ca(2+)](i) and CBF that declined to the initial basal levels and was followed by irregular brief increases in [Ca(2+)](i) and CBF. [ATP] > 1 but < 16 microM induced a similar increase in [Ca(2+)](i) and CBF but this was followed by oscillations in CBF and [Ca(2+)](i). The minimum CBF of the oscillations in CBF remained elevated above the basal rate while the minimum concentration of the [Ca(2+)](i) oscillations returned to the basal level. The minimum and maximum CBF of the oscillations in CBF were independent of the [ATP], whereas the frequency of the oscillations in CBF was dependent on the [ATP]. Similar oscillations in CBF and [Ca(2+)](i) were induced by ATP- gamma -S. Although ADP, AMP and adenosine induced a Ca(2+)-independent increase in CBF, neither ATP nor ATP- gamma -S induced an increase in CBF when the Ca(2+) increases were abolished by 20 microM BAPTA AM, a result suggesting that ATP hydrolysis was minimal. [ATP] >or=16 microM induced a sustained elevation in CBF and only a temporary, non-oscillating increase in [Ca(2+)](i). A similar response was induced by thapsigargin (2 microM). Flash photolysis of caged Ca(2+) (NP-EGTA) produced both transient and prolonged increases in [Ca(2+)](i) which were accompanied by transient and sustained increases in CBF, respectively. From these results, we propose that CBF can be increased by a direct Ca(2+) -dependent mechanism that generates the rapid increases in CBF associated with the oscillations or by an indirect Ca(2+)-dependent mechanism that is responsible for the sustained minimum increase in CBF.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009991 Oscillometry The measurement of frequency or oscillation changes. Oscillometries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002021 Buffers A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer. Buffer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA

Related Publications

Luo Zhang, and Michael J Sanderson
July 1999, The American journal of physiology,
Luo Zhang, and Michael J Sanderson
November 1998, American journal of respiratory cell and molecular biology,
Luo Zhang, and Michael J Sanderson
July 2017, Scientific reports,
Luo Zhang, and Michael J Sanderson
June 2002, Journal of applied physiology (Bethesda, Md. : 1985),
Luo Zhang, and Michael J Sanderson
January 2011, Mathematical biosciences,
Luo Zhang, and Michael J Sanderson
June 1990, Journal of applied physiology (Bethesda, Md. : 1985),
Luo Zhang, and Michael J Sanderson
September 1996, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology,
Luo Zhang, and Michael J Sanderson
July 2005, Experimental physiology,
Copied contents to your clipboard!