Effect of boar exposure at time of insemination on factors influencing fertility in gilts. 2003

K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
Department of Animal Sciences, University of Illinois, Urbana 61801, USA.

The effect of boar exposure during artificial insemination (AI) on semen backflow, fertilization, and embryo quality was evaluated. Gilts (approximately 170 d) were induced into estrus with PG600, and ovulation was synchronized using hCG 72 h later. Estrus detection was initiated after PG600 and continued at 12-h intervals. At estrus, gilts were allotted to receive boar exposure (BE, n = 20) or no boar exposure (NBE, n = 20) during AI. Gilts receiving NBE were identified to be in estrus prior to AI and the boar was then removed for 1 h, whereas gilts in the BE group received 15 min of exposure during AI. Insemination occurred in crates at 12 and 24 h after onset of estrus with 3 x 10(9) sperm/80 mL. Backflow was collected continuously with samples taken at time 0, (during AI), and at 0.25, 0.5, 0.75, 1, 2, 4, and 8 h after first and second AI. The effect of treatment was evaluated for time of insemination (min), backflow (mL), and sperm in backflow samples. Oviducts were flushed 2 d after first AI to evaluate the effect oftreatment on fertilization rate, accessory sperm numbers on embryos (scored 1 to 5), and embryo quality. There was no effect of first or second AI; therefore, data were pooled. Average duration of AI was 3.7 +/- 0.2 min and was not influenced by BE (P < 0.10). However, during the initial stage of AI, BE reduced the volume of semen (18.6 vs 32.4 +/- 3 mL) and the number of sperm lost (0.8 vs 1.3 +/- 0.15 x 10(9) sperm) compared to NBE (P < 0.05). There was a treatment x time effect (P < 0.05) for volume of backflow. By 45 min, the BE gilts lost more volume (9.0 vs 3.6 mL) compared to the NBE group, but sperm loss did not differ. Between 1 and 8 h after AI, neither volume nor sperm loss was influenced by treatment. By 8 h, total leakage (65 vs 63 mL) and total sperm loss (1.6 x 10(9) vs 1.8 x 10(9) sperm) were not influenced by BE (P > 0.10). However, more accessory sperm (P < 0.01) were found on embryos for the NBE (> or = 11 sperm/embryo) compared to BE embryos (< or = 10 sperm/embryo). Despite this observation, percentages of fertilized embryos (99.5 +/- 0.5 %) and number of embryos (11.5 +/- 0.1) were not different (P > 0.10). In conclusion, AI in the presence of a mature boar did not affect total semen leakage, sperm loss, fertilized embryos, or embryo quality. The importance of boar exposure during insemination was evident from less leakage during insemination, but had no effect on fertility; this suggests that the elimination of boar exposure during AI may not be deleterious to reproductive performance.

UI MeSH Term Description Entries
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D008297 Male Males
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001723 Birth Rate The number of births in a given population per year or other unit of time. Natality,Age-Specific Birth Rate,Age-Specific Fertility Rate,Fertility Rate,Age Specific Birth Rate,Age Specific Fertility Rate,Age-Specific Birth Rates,Age-Specific Fertility Rates,Birth Rate, Age-Specific,Birth Rates,Fertility Rate, Age-Specific,Fertility Rates,Natalities,Rate, Age-Specific Fertility,Rate, Birth,Rate, Fertility
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
October 1994, Theriogenology,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
June 1969, The British veterinary journal,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
April 1998, Animal reproduction science,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
September 1999, Zentralblatt fur Veterinarmedizin. Reihe A,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
September 2010, Animal reproduction science,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
December 2021, Journal of animal science,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
December 2014, Animal reproduction science,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
October 1974, Australian journal of biological sciences,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
May 1986, Journal of animal science,
K L Willenburg, and G M Miller, and S L Rodriguez-Zas, and R V Knox
February 2007, Reproduction in domestic animals = Zuchthygiene,
Copied contents to your clipboard!