Estimation of discretization errors in contact pressure measurements. 2003

Benjamin J Fregly, and W Gregory Sawyer
Department of Mechanical and Aerospace Engineering, University of Florida, 231 Aerospace Building, PO Box 116250, Gainesville, FL 32611, USA. fregly@ufl.edu

Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical.

UI MeSH Term Description Entries
D007719 Knee Joint A synovial hinge connection formed between the bones of the FEMUR; TIBIA; and PATELLA. Superior Tibiofibular Joint,Joint, Knee,Joint, Superior Tibiofibular,Knee Joints,Superior Tibiofibular Joints,Tibiofibular Joint, Superior
D007720 Knee Prosthesis Replacement for a knee joint. Knee Prostheses,Prostheses, Knee,Prosthesis, Knee
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D014159 Transducers Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Transducer
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

Benjamin J Fregly, and W Gregory Sawyer
July 2023, Medical image analysis,
Benjamin J Fregly, and W Gregory Sawyer
January 1968, Canadian journal of surgery. Journal canadien de chirurgie,
Benjamin J Fregly, and W Gregory Sawyer
January 1966, Sairaanhoitaja. Sjukskoterskan,
Benjamin J Fregly, and W Gregory Sawyer
November 1999, Heart (British Cardiac Society),
Benjamin J Fregly, and W Gregory Sawyer
July 2019, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Benjamin J Fregly, and W Gregory Sawyer
January 2015, Ground water,
Benjamin J Fregly, and W Gregory Sawyer
September 2018, Micromachines,
Benjamin J Fregly, and W Gregory Sawyer
June 1968, Nippon Ganka Gakkai zasshi,
Benjamin J Fregly, and W Gregory Sawyer
July 2016, Klinische Monatsblatter fur Augenheilkunde,
Benjamin J Fregly, and W Gregory Sawyer
November 1998, Blood pressure,
Copied contents to your clipboard!