Photolysis of caged calcium in cilia induces ciliary reversal in Paramecium caudatum. 2003

Yoshiaki Iwadate
Department of Life Science, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan. iwadate.yoshiaki@nifty.ne.jp

Intracellular Ca(2+) concentration controls both the pattern and frequency of ciliary and flagellar beating in eukaryotes. In Paramecium, it is widely accepted that the reversal of the direction of ciliary beating (ciliary reversal) is induced by an increase in intra-ciliary Ca(2+) levels. Despite this, the Ca(2+)-sensitive region of the cilium that initiates ciliary reversal has not been clearly identified. We injected caged calcium into living P. caudatum cells and applied ultraviolet (UV) light to portions of the injected cells to raise artificially the intracellular Ca(2+) level ([Ca(2+)](i)). UV application to the upper ciliary region above the basal body induced ciliary reversal in injected cells. Furthermore, UV application to the tips of cilia induced weak ciliary reversal. Larger areas of photolysis in the cilium gave rise to greater angles of ciliary reversal. These results strongly suggest that the Ca(2+)-sensitive region for ciliary reversal is distributed all over the cilium, above the basal body.

UI MeSH Term Description Entries
D010247 Paramecium A genus of ciliate protozoa that is often large enough to be seen by the naked eye. Paramecia are commonly used in genetic, cytological, and other research. Parameciums
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

Yoshiaki Iwadate
January 1968, The Journal of general physiology,
Yoshiaki Iwadate
March 2001, The Journal of experimental biology,
Yoshiaki Iwadate
April 1938, Science (New York, N.Y.),
Yoshiaki Iwadate
August 1977, The Journal of protozoology,
Yoshiaki Iwadate
June 1976, The Journal of cell biology,
Yoshiaki Iwadate
September 1977, The Journal of physiology,
Yoshiaki Iwadate
November 1979, The Journal of biological chemistry,
Copied contents to your clipboard!