Morphogenesis of the membrane-bound electron-transport system in sporulating Bacillus megaterium KM. 1975

B J Wilkinson, and D J Ellar

The properties of electron transport systems present in soluble and particulate fractions of spores of Bacillus megaterium KM?HAVE BEEN COMPARED WIth those of similar fractions prepared from exponential-phase vegetative cells of this organism. The timing and localization of modifications of the electron transport system occurring during sporulation have been investigated by using a system for separating forespores from mother cells at all stages during development [8]. Spore membranes contained cytochromes a + a3, and o at lower concentrations than in vegetative membranes, and in addition cytochrome c, which was not found in exponential-phase vegetative membranes. An NADH oxidase activity of similar specific activity was found in both spore and vegetative membranes but DL-glycerol 3-phosphate and L-malate oxidase activities were found only in vegetative membranes. A soluble NADH oxidase of low specific activity was found in spores and vegetative cells which probably involves a flavoprotein reaction with oxygen because the activity was stimulated by FAD or FMN and difference spectra of concentrated soluble fractions showed spectra typical of a flavoprotein. Particulate NADH oxidase was sensitive to all classical inhibitors of electron transport tested whereas soluble NADH oxidase was insensitive to many of these inhibitors. Cytochrome c was formed between stage I and II of sporulation and this coincided with a five-fold increase in NADH-cytochrome c reductase activity. Forespore membranes had lower contents of cytochromes than sporangial cell membranes but similar levels of NADH and L-malate oxidases; DL-glycerol 3-phosphate oxidase activity could not be detected in either membranes by stage III of sporulation. This characterization of spore electron transport systems provides a basis for suggestions concerning initial metabolic events during spore germination and the effect of a number of germination inhibitors.

UI MeSH Term Description Entries
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005993 Glycerolphosphate Dehydrogenase Alpha-Glycerophosphate Dehydrogenase,Glycerol-3-Phosphate Dehydrogenase,Glycerophosphate Dehydrogenase,Glycerophosphate Oxidase,Alpha Glycerophosphate Dehydrogenase,Dehydrogenase, Alpha-Glycerophosphate,Dehydrogenase, Glycerol-3-Phosphate,Dehydrogenase, Glycerolphosphate,Dehydrogenase, Glycerophosphate,Glycerol 3 Phosphate Dehydrogenase,Oxidase, Glycerophosphate
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

B J Wilkinson, and D J Ellar
October 1969, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
B J Wilkinson, and D J Ellar
March 1969, Biochemistry,
B J Wilkinson, and D J Ellar
August 1972, Biochimica et biophysica acta,
B J Wilkinson, and D J Ellar
December 1987, Gifu Shika Gakkai zasshi = The Journal of Gifu Dental Society,
B J Wilkinson, and D J Ellar
April 1970, Journal of molecular biology,
B J Wilkinson, and D J Ellar
January 1979, Microbios,
B J Wilkinson, and D J Ellar
October 1966, The Journal of biological chemistry,
B J Wilkinson, and D J Ellar
June 1962, Biochemical and biophysical research communications,
Copied contents to your clipboard!