Rebeccamycin analogues as anti-cancer agents. 2003

Michelle Prudhomme
Université Blaise Pascal, Synthèse et étude de systèmes à intérêt biologique, UMR 6504 du CNRS, 24, avenue des Landais, 63177, Aubière, France. mprud@chimtp.univ-bpclermont.fr

Rebeccamycin, a microbial metabolite possessing a maleimide indolo[2,3-a]carbazole framework with a carbohydrate moiety attached to one of the indole nitrogens, is a well-known topoisomerase I inhibitor. This review reports the various total syntheses of rebeccamycin and structure-activity relationship studies on rebeccamycin analogues. Rebeccamycin analogues were prepared either by semi-synthesis from the natural metabolite or by total synthesis. Different families of rebeccamycin analogues were obtained by modifications at the imide heterocycle, dechlorination and substitutions on the indole moieties, modifications of the sugar residue, construction of dimers, coupling the sugar unit to the second indole nitrogen, changing indolo[2,3-a]carbazole skeleton to indolo[2,3-c]carbazole, replacing one or both indole moieties by 7-azaindole units. The biological activities of the rebeccamycin analogues are described. According to their chemical structure, the analogues can inhibit topoisomerase I and/or kinases. From the structure-activity relationships, some important rules were established. Several compounds exhibit stronger antiproliferative activities than the natural metabolite with IC(50) values in the nanomolar range. Some analogues, especially those possessing azaindole moieties, are much more selective than rebeccamycin toward the tumour cell lines tested.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002227 Carbazoles Benzo-indoles similar to CARBOLINES which are pyrido-indoles. In plants, carbazoles are derived from indole and form some of the INDOLE ALKALOIDS.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Michelle Prudhomme
January 2000, Nucleosides, nucleotides & nucleic acids,
Michelle Prudhomme
June 2010, European journal of medicinal chemistry,
Michelle Prudhomme
June 1998, Bioorganic & medicinal chemistry letters,
Michelle Prudhomme
October 2014, European journal of medicinal chemistry,
Michelle Prudhomme
January 2015, Anti-cancer agents in medicinal chemistry,
Michelle Prudhomme
March 2010, European journal of medicinal chemistry,
Michelle Prudhomme
July 2011, European journal of medicinal chemistry,
Michelle Prudhomme
January 2018, Chemical Society reviews,
Michelle Prudhomme
September 2018, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!