Activation of 5-HT(1A) autoreceptors enhances the inhibitory effect of galanin on hippocampal 5-HT release in vivo. 2003

T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden.

The microdialysis technique was used to examine interactions between 5-HT(1A) and galanin receptors in the dorsal raphe nucleus (DRN), by measuring the extracellular levels of 5-HT in the ventral hippocampus of awake rats. The rats were pretreated with the 5-HT(1A) receptor agonist (R,S)-8-OH-DPAT (0.3 mg/kg, s.c.) or saline. 8-OH-DPAT caused a time-dependent reduction of basal 5-HT levels down to 43-48% at 40 min while at 140 min, the hippocampal 5-HT had returned to control values. At that time point, the rats received a second injection of 8-OH-DPAT or galanin (0.15, 0.5 and 1.5 nmol/0.5 microl) infused into the lateral ventricle. The second injection of 8-OH-DPAT caused a significantly smaller reduction of hippocampal 5-HT levels. In contrast, galanin at all three doses in the 8-OH-DPAT-pretreated groups, was significantly more potent in reducing 5-HT levels (maximal reduction to 74%, 52% and 49%, respectively) than it was in saline-pretreated rats (maximal reduction to 96%, 85% and 69%, respectively). The inhibitory effect of galanin (1.5 nmol) on extracellular 5-HT levels in the rat hippocampus was significantly attenuated by co-administration of the 5-HT(1A) receptor antagonists WAY-100635 (0.3 and 0.6 mg/kg s.c.) and, to a lesser extent, with pindolol (20 mg/kg s.c.). These data provide direct in vivo evidence of agonistic 5-HT(1A)-galanin receptor interaction at the presynaptic level. Furthermore, the findings indicate that a down-regulation of the somato-dendritic 5-HT(1A) autoreceptors, following their stimulation with 8-OH-DPAT and possibly also indirectly with 5-HT reuptake inhibitors, may be compensated by a subsequent 'sensitization' of the inhibitory galanin receptors in the DRN. Thus, the enhanced galanin receptor-mediated inhibition of 5-HT neurotransmission may contribute to the pathophysiology of depression or to the reduced and delayed efficacy of antidepressant therapies.

UI MeSH Term Description Entries
D008297 Male Males
D010869 Pindolol A moderately lipophilic beta blocker (ADRENERGIC BETA-ANTAGONISTS). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638) Prindolol,LB-46,Visken,LB 46,LB46
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
January 1986, Clinical neuropharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
November 1988, Naunyn-Schmiedeberg's archives of pharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
October 1988, Neuropharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
October 2004, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
November 2001, Behavioural brain research,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
January 1997, Journal of neural transmission (Vienna, Austria : 1996),
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
July 1986, Naunyn-Schmiedeberg's archives of pharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
January 2007, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
January 1997, Neuropharmacology,
T Yoshitake, and S Yoshitake, and M Yamaguchi, and S O Ogren, and J Kehr
December 2008, Journal of neurochemistry,
Copied contents to your clipboard!