Local effects of acute cellular injury on regional myocardial blood flow. 1976

F R Cobb, and R J Bache, and F Rivas, and J C Greenfield

This study was designed to examine local effects of acute cellular injury on regional myocardial blood flow. Studies were carried out in awake dogs chronically prepared with indwelling catheters in the aorta and left atrium and an occluder on the left circumflex coronary artery. Regional myocardial blood flow was measured by using 7-10-mum radioisotope-labeled microspheres after reestablishing inflow to a region subjected to a 2-h complete coronary occlusion. Microspheres were injected 15 s, 15 min, 4 h, and 3 days after reperfusion to assess effects of cell injury at varying intervals after reperfusion. Effects of acute cellular injury on blood flow were assessed by determining the relationship between regional blood flow and the extent of subsequent cellular necrosis measured in multiple tissue samples, weight 1-2 g, from the entire ischemic zone. The extent of cellular necrosis was determined from histological sections of each tissue sample. Prolonged ischemia effected local tissue responses which altered perfusion as a function of the interval after reperfusion and the subsequent extent of myocardial necrosis. Although the net response in each region immediately after reperfusion was vasodilation, the hyperemia in regions which subsequently suffered cellular necrosis was attenuated in direct proportion to the extent of subsequent infarction. Blood flow to acutely injured regions remained equal to, or in excess of, flow to nonischemic regions 15 min after reperfusion, but at 4 h and 3 days after reperfusion, flow was significantly decreased in regions with greater than 50% infarction. Thus, these data indicate that prolonged ischemia initiates tissue responses which progressively reduce myocardial perfusion after reperfusion. These effects on tissue perfusion may result from normal responses to irreversible injury and (or) abnormal responses to reversible and thus, potentially alterable, ischemic injury.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013898 Thoracic Injuries General or unspecified injuries to the chest area. Chest Injuries,Injuries, Chest,Injuries, Thoracic,Chest Injury,Injury, Chest,Injury, Thoracic,Thoracic Injury

Related Publications

F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
July 1974, Surgery,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
September 1983, The American journal of physiology,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
January 1978, Basic research in cardiology,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
April 1970, Cardiovascular research,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
June 1982, Canadian journal of physiology and pharmacology,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
April 1973, American heart journal,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
January 1972, Circulation,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
September 1967, The Journal of clinical investigation,
F R Cobb, and R J Bache, and F Rivas, and J C Greenfield
September 1973, Kokyu to junkan. Respiration & circulation,
Copied contents to your clipboard!