The response to stretch of human intercostal muscle spindles studied in vitro. 1975

J N Davis

1. The discharge properties of human muscle spindles have been studied in vitro in a preparation based on the biopsied external intercostal muscle. 2. The static and dynamic responsiveness of thirty-six endings in twenty visualized and histologically identified spindles have been investigated using amplitudes and velocities of stretch likely to encompass those occurring in vivo. 3. The dynamic index, measured at a stretch velocity of 3 mm/sec, ranged from 3 to 40 impulses/sec and was distributed bimodally, consitent with the presence of primary and secondary endings. 4. The relationship between the dynamic index and the velocity of stretch was approximately linear both for primary and secondary endings up to the maximum velocity tested (10 mm/sec). 5. The frequency/extension relationship was approximately linear for both primary and secondary endings. The mean values of the slope for primary and secondary endings were 16-1 +/- 8-3 S.D. of the observation and 12-1 +/- 6-5 impulses/sec per five per cent extension. 6. The slopes of the frequency/extension relationship for endings lying in the same spindle were positively correlated, significant at the 10% level. 7. It was estimated from the results in vitro that the position sensitivity of human intercostal spindles in vivo ranges from 2 to 21 impulses/sec per millimetre.

UI MeSH Term Description Entries
D007366 Intercostal Muscles Respiratory muscles that arise from the lower border of one rib and insert into the upper border of the adjoining rib, and contract during inspiration or respiration. (From Stedman, 25th ed) Intercostal Muscle,Muscle, Intercostal,Muscles, Intercostal
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

Copied contents to your clipboard!