Suppressors of cytokine signalling: SOCS. 2002

Lykke Larsen, and Carsten Röpke
Department of Medical Anatomy, University of Copenhagen, Panum Institute, Copenhagen, Denmark.

The mechanism of positive regulation of cytokine signalling pathways has been well investigated, whereas our knowledge of negative regulation is relatively sparse. Here we review recent literature on important negative regulators: the family of suppressors of cytokine signalling, SOCS, consisting of eight members (SOCS-1 to SOCS-7 and CIS) all sharing a central SH2 domain and a C-terminal SOCS box. Expression of CIS, SOCS-1, SOCS-2 and SOCS-3 is induced by various cytokines, and overexpression studies in various cell lines have demonstrated their inhibitory roles. These family members have been implicated in the negative regulation of several pathways, particularly the JAK/STAT pathway, and since this signalling pathway is responsible for their induction, they form part of a classical negative feedback circuit. To date, at least three different modulating mechanisms have been demonstrated: through the SH2 domain they bind to phosphotyrosines on the target protein, leading to inhibition of signal transduction by N-terminal inactivation of JAK, by blocking access of STAT to the receptor sites, or by SOCS box-targeting bound proteins to proteasomal degradation. In gene modification studies in mice, it has been demonstrated that SOCS-1 plays an important role in IFNgamma-regulation and T-cell differentiation, while SOCS-2 seems necessary for normal growth regulation. SOCS-3(-/-) mice die during embryogenesis for a reason still not fully understood, but insufficient control of fetal erythropoiesis or defects in placental development may be involved. The physiological role for the other family members, as well as their molecular regulation mechanisms, remain to be revealed.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.

Related Publications

Lykke Larsen, and Carsten Röpke
October 1998, The international journal of biochemistry & cell biology,
Lykke Larsen, and Carsten Röpke
October 2001, Cellular and molecular life sciences : CMLS,
Lykke Larsen, and Carsten Röpke
June 2002, Nature reviews. Immunology,
Lykke Larsen, and Carsten Röpke
April 2011, Biochemical and biophysical research communications,
Lykke Larsen, and Carsten Röpke
August 2000, Journal of cell science,
Lykke Larsen, and Carsten Röpke
January 2020, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
Lykke Larsen, and Carsten Röpke
January 2014, Molecular biology reports,
Lykke Larsen, and Carsten Röpke
October 1999, Journal of leukocyte biology,
Copied contents to your clipboard!