Microvascular assembly and cell invasion in chick mesonephros grafted onto chorioallantoic membrane. 2003

Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
Group of Vascular Morphogenesis, Department of Animal Health and Anatomy, Veterinary Faculty, Center of Animal Biotechnology and Gene Therapy (CBATEG), Autonomous University of Barcelona, Spain.

Embryonic tissues, in common with other tissues, including tumours, tend to develop a substantial vasculature when transplanted onto the chorioallantoic membrane (CAM). Studies conducted to date have not examined in any detail the identity of vessels that supply these grafts, although it is known that the survival of transplanted tissues depends on their ability to connect with CAM vessels supplying oxygen and nutrients. We grafted the mesonephros, a challenging model for studies in vascular development, when it was fully developed (HH35). We used reciprocal chick-quail transplantations in order to study the arterial and venous connections and to analyse the cell invasion from the CAM to the organ, whose degeneration in normal conditions is rapid. The revascularization of the grafted mesonephros was produced by the formation of peripheral anastomoses between the graft and previous host vasculatures. The assembly of graft and CAM blood vessels occurred between relatively large arteries or veins, resulting in chimeric vessels of varying morphology depending on their arterial or venous status. Grafts showed an increased angiogenesis from their original vasculature, suggesting that the normal vascular degeneration of the mesonephros was partially inhibited. Three types of isolated host haemangioblast were identified in the mesonephros: migrating angioblast-like cells, indicating vasculogenesis, undifferentiated haematopoietic cells and macrophages, which might have been involved in the angiogenesis. Tomato lectin was found to bind activated macrophages in avian embryos.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008650 Mesonephros One of a pair of excretory organs (mesonephroi) which grows caudally to the first pair (PRONEPHROI) during development. Mesonephroi are the permanent kidneys in adult amphibians and fish. In higher vertebrates, proneprhoi and most of mesonephroi degenerate with the appearance of metanephroi. The remaining ducts become WOLFFIAN DUCTS. Wolffian Body,Mesonephroi,Body, Wolffian
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011784 Quail Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae. Quails
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002823 Chorion The outermost extra-embryonic membrane surrounding the developing embryo. In REPTILES and BIRDS, it adheres to the shell and allows exchange of gases between the egg and its environment. In MAMMALS, the chorion evolves into the fetal contribution of the PLACENTA. Chorions
D005321 Extraembryonic Membranes The thin layers of tissue that surround the developing embryo. There are four extra-embryonic membranes commonly found in VERTEBRATES, such as REPTILES; BIRDS; and MAMMALS. They are the YOLK SAC, the ALLANTOIS, the AMNION, and the CHORION. These membranes provide protection and means to transport nutrients and wastes. Fetal Membranes,Extra-Embryonic Membranes,Extra Embryonic Membranes,Extra-Embryonic Membrane,Extraembryonic Membrane,Fetal Membrane,Membrane, Extra-Embryonic,Membrane, Extraembryonic,Membrane, Fetal,Membranes, Extra-Embryonic,Membranes, Extraembryonic,Membranes, Fetal
D000482 Allantois An extra-embryonic membranous sac derived from the YOLK SAC of REPTILES; BIRDS; and MAMMALS. It lies between two other extra-embryonic membranes, the AMNION and the CHORION. The allantois serves to store urinary wastes and mediate exchange of gas and nutrients for the developing embryo. Allantoic Membrane,Membrane, Allantoic

Related Publications

Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
January 2024, Microvascular research,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
October 2016, Microcirculation (New York, N.Y. : 1994),
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
October 2003, Brain research,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
October 1998, Anatomy and embryology,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
January 1997, International journal of microcirculation, clinical and experimental,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
January 2016, Lasers in medical science,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
August 2020, The journal of obstetrics and gynaecology research,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
January 1999, Angiogenesis,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
August 1996, Tissue & cell,
Marc Navarro, and Marco C DeRuiter, and Ana Carretero, and Jesús Ruberte
February 1965, Journal of the National Cancer Institute,
Copied contents to your clipboard!