NMDA receptor-mediated regulation of human megakaryocytopoiesis. 2003

Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
Department of Biology, University of York, United Kingdom.

Identification of the regulatory inputs that direct megakaryocytopoiesis and platelet production is essential for the development of novel therapeutic strategies for the treatment of thrombosis and related hematologic disorders. We have previously shown that primary human megakaryocytes express the N-methyl-d-aspartate acid (NMDA) receptor 1 (NR1) subunit of NMDA-type glutamate receptors, which appear to be pharmacologically similar to those identified at neuronal synapses, responsible for mediating excitatory neurotransmission in the central nervous system. However, the functional role of NMDA receptor signaling in megakaryocytopoiesis remains unclear. Here we provide evidence that demonstrates the fundamental importance of this signaling pathway during human megakaryocyte maturation in vitro. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of RNA extracted from CD34+-derived megakaryocytes identified expression of NR2A and NR2D receptor subunits in these cells, as well as the NMDA receptor accessory proteins, Yotiao and postsynaptic density protein 95 (PSD-95). In functional studies, addition of a selective NMDA receptor antagonist, MK-801 inhibited proplatelet formation, without affecting proliferation or apoptosis. Exposure of CD34+ cells to MK-801 cultured for 14 days in the presence of thrombopoietin induced a decrease in expression of the megakaryocyte cell surface markers CD61, CD41a, and CD42a compared with controls. At an ultrastructural level, MK-801-treated cells lacked alpha-granules, demarcated membranes, and multilobed nuclei, which were prominent in untreated mature megakaryocyte controls. Using immunohistochemistry on sections of whole tibiae from c-Mpl knockout mice we demonstrated that megakaryocytic NMDA receptor expression was maintained following c-Mpl ablation. These data support a fundamental role for glutamate signaling in megakaryocytopoiesis and platelet production, which is likely to be independent of thrombopoietin-mediated effects.

UI MeSH Term Description Entries
D008533 Megakaryocytes Very large BONE MARROW CELLS which release mature BLOOD PLATELETS. Megakaryocyte
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1989, Annals of the New York Academy of Sciences,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1990, Nouvelle revue francaise d'hematologie,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
October 1995, Blood,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1985, Progress in clinical and biological research,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
April 1998, Brain research,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 2022, Frontiers in molecular neuroscience,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1990, Progress in clinical and biological research,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1986, Progress in clinical and biological research,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
October 2002, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology,
Ian S Hitchcock, and Timothy M Skerry, and Martin R Howard, and Paul G Genever
January 1989, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!