The RNA polymerase II core promoter. 2003

Stephen T Smale, and James T Kadonaga
Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA. smale@mednet.ucla.edu

The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

Stephen T Smale, and James T Kadonaga
July 2017, Genes & development,
Stephen T Smale, and James T Kadonaga
January 2006, Biochemical Society symposium,
Stephen T Smale, and James T Kadonaga
January 2012, Wiley interdisciplinary reviews. Developmental biology,
Stephen T Smale, and James T Kadonaga
December 2006, Biochemical Society transactions,
Stephen T Smale, and James T Kadonaga
May 2019, Genetics,
Stephen T Smale, and James T Kadonaga
June 2008, Current opinion in cell biology,
Stephen T Smale, and James T Kadonaga
January 2012, Transcription,
Stephen T Smale, and James T Kadonaga
September 2002, Experimental & molecular medicine,
Stephen T Smale, and James T Kadonaga
November 2016, BMC genomics,
Stephen T Smale, and James T Kadonaga
July 2004, Genes & development,
Copied contents to your clipboard!