Effects of x-irradiation on drug-metabolizing enzyme systems in liver microsomes of male and female rats. 1976

T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000632 Aminopyrine A pyrazolone with analgesic, anti-inflammatory, and antipyretic properties but has risk of AGRANULOCYTOSIS. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of CYTOCHROME P-450 metabolic activity in LIVER FUNCTION TESTS. Amidophenazon,Aminophenazone,Dimethylaminophenazone,Dipyrine,Amidazophen,Amidophen,Amidopyrine,Aminofenazone,Dimethyl-N-aminoantipyrine,Dimethylaminoantipyrine,Eufibron,Dimethyl N aminoantipyrine
D000814 Aniline Compounds Compounds that include the aminobenzene structure. Phenylamine,Phenylamines,Anilines,Compounds, Aniline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012737 Sex Factors Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances. Factor, Sex,Factors, Sex,Sex Factor

Related Publications

T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
July 1968, Journal of biochemistry,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
January 1995, European journal of drug metabolism and pharmacokinetics,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
June 1967, Radiation research,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
May 1974, Chemical & pharmaceutical bulletin,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
April 1978, Experimental and molecular pathology,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
July 1988, Arzneimittel-Forschung,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
December 1973, Biochemical pharmacology,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
May 1970, Molecular pharmacology,
T Nakazawa, and O Yukawa, and S Ushijima, and S Fujimori
March 1969, Journal of radiation research,
Copied contents to your clipboard!