Pyrene-induced changes of glutathione-S-transferase activities in different microalgal species. 2003

An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
Department of Biology and Chemistry, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon Tong, Hong Kong.

The glutathione-S-transferase (GST, EC 2.5.1.18) activities in different freshwater microalgal species, namely, Chlorella vulgaris, Scenedesmus quadricauda, Scenedesmus platydiscus and Selenastrum capricornutum under the control condition (without pyrene addition) and at different pyrene concentrations were compared. During 7-days incubation under the control condition (without pyrene addition), all microalgal species exhibited measurable GST activities but the activities varied significantly among species and the difference could be more than 100-fold. The addition of pyrene at concentrations ranged from 0.1 to 1.0 mg l(-1) to microalgal cultures led to changes in GST activities but the patterns of changes varied from species to species. Among the four species, remarkably decreases in GST activities were found in S. quadricauda, a species most sensitive to pyrene toxicity, at high pyrene concentrations. On the contrary, GST activities in S. platydiscus and Se. capricornutum increased significantly as pyrene concentrations increased. These two species were found to be more resistant to pyrene and had higher efficiencies in metabolising pyrene than other species. C. vulgaris did not show any significant change in their GST activities with the addition of pyrene, and pyrene was not metabolised by this species. These results suggest that pyrene-induced changes of GST activities in microalgae might be related to their resistance and their ability to metabolise pyrene. In general, the pyrene-induced changes of GST activities were higher at 4-days than at 1- and 7-days incubation in all microalgae.

UI MeSH Term Description Entries
D011721 Pyrenes A group of condensed ring hydrocarbons.
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D056890 Eukaryota One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista. Eukaryotes,Eucarya,Eukarya,Eukaryotas,Eukaryote

Related Publications

An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
January 1989, Drug metabolism and drug interactions,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
December 1981, Toxicology letters,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
December 1985, Biochemical and biophysical research communications,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
June 1995, The Journal of biological chemistry,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
February 1997, Veterinary and human toxicology,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
October 1993, European journal of biochemistry,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
November 1985, Biochemical pharmacology,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
August 1984, The American review of respiratory disease,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
October 1986, Biochimica et biophysica acta,
An-Ping Lei, and Yuk-Shan Wong, and Nora Fung-Yee Tam
October 1975, Archives of biochemistry and biophysics,
Copied contents to your clipboard!