Androgen metabolism by rat epididymis. 3. Effect of castration and anti-androgens. 1976

O Djoseland

The in vivo and in vitro metabolism of 3H-testosterone by rat epididymis and the changes in epididymal weight have been studied after castration and treatment with anti-androgens. The utilization of 3H-testosterone was greatly reduced after castration as was the formation of 5alpha-reduced 17 beta-hydroxy metabolites. The formation of the 17 -keto metabolites was unaffected. Castration had no effect on the ratio between water and ether soluble radioactivity. Administration of testosterone propionate, necessary for giving normal stimulated prostate weight (150 mug/day), restored the metabolism of testosterone to approximately normal values. Estradiol benzoate and progesterone inhibited metabolism of testosterone in vitro and greatly reduced the formation of DHT (17 beta-hydroxy-5alpha-androstan-3-one) and 3 alpha-diol(5 alpha-androstane-3 alpha-17 beta-diol) by experiments both in vivo and in vitro. No effect of cyproterone acetate could be demonstrated on either the in vitro or in vivo metabolism of testosterone. Castration for 14 days reduced the epididymal weight to about 30% of that found in intact animals. Administration of testosterone propionate restored the epididymal weight to about 80% of normal. Estradiol benzoate and cyproterone acetate given to intact rats led to a decrease in the epididymal weight. Progesterone had no such effect. In 14 days castrated rats receiving testosterone propionate all three anti-androgens reduced the weight of the epididymis. In conclusion, our results show that the metabolic conversion of testosterone in epididymis to DHT and 3 alpha-diol is dramatically dependent on the hormonal status of the animal; castration or treatment with anti-androgens causes a reduced formation of the "active" androgens whilst testosterone replacement treatment restores the metabolism of testosterone to normal.

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D003534 Cyproterone An anti-androgen that, in the form of its acetate (CYPROTERONE ACETATE), also has progestational properties. It is used in the treatment of hypersexuality in males, as a palliative in prostatic carcinoma, and, in combination with estrogen, for the therapy of severe acne and hirsutism in females. Cyproterone, 1alpha,2 alpha,9 beta,10 alpha-Isomer
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000726 Androgen Antagonists Compounds which inhibit or antagonize the biosynthesis or actions of androgens. Androgen Antagonist,Antiandrogen,Antiandrogens,Anti-Androgen Effect,Anti-Androgen Effects,Antiandrogen Effect,Antiandrogen Effects,Antagonist, Androgen,Antagonists, Androgen,Anti Androgen Effect,Anti Androgen Effects,Effect, Anti-Androgen,Effect, Antiandrogen,Effects, Anti-Androgen,Effects, Antiandrogen
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

O Djoseland
September 1983, Endocrinology,
O Djoseland
January 1978, Journal of reproduction and fertility,
O Djoseland
January 1983, The International journal of biochemistry,
O Djoseland
January 1989, Indian journal of dermatology, venereology and leprology,
O Djoseland
November 1977, Journal of steroid biochemistry,
O Djoseland
November 1971, Biochemical and biophysical research communications,
O Djoseland
May 1969, Schweizerische medizinische Wochenschrift,
Copied contents to your clipboard!