Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. 2003

Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA. thio@kids.wustl.edu

Inhibitory glycine receptors (GlyRs) in the mammalian cortex probably contribute to brain development and to maintaining tonic inhibition. Given their presence throughout the cortex, their modulation likely has important physiological consequences. Although benzodiazepines potentiate gamma-aminobutyric acidA receptors (GABAARs), they may also modulate GlyRs because binding studies initially suggested that they act at GlyRs. Furthermore, their diminished ability to potentiate neonatal GABAARs suggests that they may exert their beneficial clinical effects at another site in the developing brain. Therefore we examined the effect of benzodiazepines on whole cell currents mediated by GlyRs in cultured embryonic mouse hippocampal neurons. First, we determined the GlyR subunit composition in this preparation. Glycine, beta-alanine, and taurine activate strychnine-sensitive chloride currents in a dose-dependent manner. Maximal concentrations of the three agonists produce equal, nonadditive responses as expected of full agonists. The pharmacological properties of the GlyR currents including their pattern of modulation by picrotoxinin, picrotin, and tropisetron indicate that GlyRs consist of alpha2beta heteromers and alpha2 homomers. Reverse transcriptase polymerase chain reaction (RTPCR) studies confirmed the presence of alpha2 and beta subunits. Second, we found that micromolar concentrations of some benzodiazepines, including chlordiazepoxide and nitrazepam, inhibit GlyR currents. Nitrazepam inhibition of GlyRs is noncompetitive, is not voltage dependent, and does not reflect enhanced desensitization. Thus benzodiazepines allosterically inhibit alpha2-containing GlyRs in embryonic mouse hippocampal neurons via a "low"-affinity site.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001569 Benzodiazepines A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring. Benzodiazepine,Benzodiazepine Compounds
D013654 Taurine A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids. Taufon,Tauphon,Taurine Hydrochloride,Taurine Zinc Salt (2:1),Taurine, Monopotassium Salt
D015091 beta-Alanine An amino acid formed in vivo by the degradation of dihydrouracil and carnosine. Since neuronal uptake and neuronal receptor sensitivity to beta-alanine have been demonstrated, the compound may be a false transmitter replacing GAMMA-AMINOBUTYRIC ACID. A rare genetic disorder, hyper-beta-alaninemia, has been reported. 3-Aminopropionic Acid,beta-Alanine Hydrochloride,beta-Alanine, Calcium Salt (2:1),beta-Alanine, Monopotassium Salt,beta-Alanine, Monosodium Salt,3 Aminopropionic Acid,Hydrochloride, beta-Alanine,beta Alanine,beta Alanine Hydrochloride,beta Alanine, Monopotassium Salt,beta Alanine, Monosodium Salt
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018009 Receptors, Glycine Cell surface receptors that bind GLYCINE with high affinity and trigger intracellular changes which influence the behavior of cells. Glycine receptors in the CENTRAL NERVOUS SYSTEM have an intrinsic chloride channel. GlyA receptor is sensitive to STRYCHNINE and localized in the post-synaptic membrane of inhibitory glycinergic neurons. GlyB receptor is insensitive to strychnine and associated with the excitatory NMDA receptor. Excitatory Glycine Receptors,GlyA Receptors,GlyB Receptors,Glycine A Receptors,Glycine B Receptors,Glycine Receptor alpha1,Glycine Receptors,Inhibitory Glycine Receptor,SIG Receptor,Strychnine-Insensitive Glycine Receptor,Strychnine-Sensitive Glycine Receptor,Glycine Receptor,Glycine Receptor, Inhibitory,Glycine Receptor, Strychnine-Insensitive,Glycine Receptor, Strychnine-Sensitive,Receptor, Glycine,Receptor, Inhibitory Glycine,Receptor, SIG,Receptor, Strychnine-Insensitive Glycine,Receptor, Strychnine-Sensitive Glycine,Receptors, GlyB,Strychnine Insensitive Glycine Receptor,Strychnine Sensitive Glycine Receptor
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
January 2006, Neuroscience,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
December 2007, Journal of neurophysiology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
February 2006, The Journal of biological chemistry,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
November 1996, Journal of neurophysiology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
August 2011, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
April 1976, The Journal of pharmacy and pharmacology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
March 1976, British journal of pharmacology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
June 2009, Brain research,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
March 2007, European journal of pharmacology,
Liu Lin Thio, and Ananth Shanmugam, and Keith Isenberg, and Kelvin Yamada
January 2018, Frontiers in molecular neuroscience,
Copied contents to your clipboard!