Etanidazole-loaded microspheres fabricated by spray-drying different poly(lactide/glycolide) polymers: effects on microsphere properties. 2003

Fang-Jing Wang, and Chi-Hwa Wang
Department of Chemical and Environmental Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Republic of Singapore.

In this work, a spraying technique was used to encapsulate etanidazole (a hypoxic radiosensitizer) into different poly(lactide/glycolide) polymers. The properties of the obtained microspheres, especially the particle size and distribution, morphology and release rate were investigated. Unexpectedly, poly(L-lactide) (PLLA) shows a fast release rate, comparable to PLGA 50: 50, due to the dissociation of the microspheres although the release rate of the spray-dried microspheres of other polymers decreases with increasing lactide ratio. It is also interesting to note that, contrary to the viscosity sequence of the polymer solutions, the particle size of the microspheres decreases in the order PLGA 50: 50, PLGA 65: 35, PLGA 85: 15 and PDLA. The morphology of microspheres can be affected by polymer properties (e.g. lactide/glycolide ratio, molecular weight, crystallinity and Tg) and fabrication conditions (e.g. solvent and polymer concentration to be sprayed). Although most of the microspheres fabricated by EA have a donghnut-like shape with smooth surface, it is possible to obtain spherical particles by choosing proper polymer type and polymer concentration. A further examination of the mechanisms of the atomization process and the solvent evaporation process reveals their respective effect on droplet formation and particle formation, both of which are essential for the spray-drying technique. It is found that polymer phase transition (affected by the polymer solubility) and its subsequent solvent evaporation processes can finally determine the morphology and the particle size of the spray-dried particles made from different polymers. In essence, the lactide/glycolide ratio of the polymers plays a more important role in affecting the properties of the spray-dried microspheres.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D011098 Polyglactin 910 A polyester used for absorbable sutures & surgical mesh, especially in ophthalmic surgery. 2-Hydroxy-propanoic acid polymer with polymerized hydroxyacetic acid, which forms 3,6-dimethyl-1,4-dioxane-dione polymer with 1,4-dioxane-2,5-dione copolymer of molecular weight about 80,000 daltons. Glycolic-Lactic Acid Polyester,Poly(Lactide-Co-Glycoside),Dimethyldioxanedione Polymer with Dioxanedione Polymer,Dioxanedione Polymer with Dimethyldioxanedione Polymer,Poly(Glycolide Lactide)Copolymer,Poly(Lactide-Co-Glycolide),Polygalactin 910,Polyglactin,Vicryl,Acid Polyester, Glycolic-Lactic,Glycolic Lactic Acid Polyester,Polyester, Glycolic-Lactic Acid
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D003692 Delayed-Action Preparations Dosage forms of a drug that act over a period of time by controlled-release processes or technology. Controlled Release Formulation,Controlled-Release Formulation,Controlled-Release Preparation,Delayed-Action Preparation,Depot Preparation,Depot Preparations,Extended Release Formulation,Extended Release Preparation,Prolonged-Action Preparation,Prolonged-Action Preparations,Sustained Release Formulation,Sustained-Release Preparation,Sustained-Release Preparations,Timed-Release Preparation,Timed-Release Preparations,Controlled-Release Formulations,Controlled-Release Preparations,Extended Release Formulations,Extended Release Preparations,Slow Release Formulation,Sustained Release Formulations,Controlled Release Formulations,Controlled Release Preparation,Controlled Release Preparations,Delayed Action Preparation,Delayed Action Preparations,Formulation, Controlled Release,Formulations, Controlled Release,Prolonged Action Preparation,Release Formulation, Controlled,Release Formulations, Controlled,Sustained Release Preparation,Timed Release Preparation,Timed Release Preparations
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D017341 Etanidazole A nitroimidazole that sensitizes hypoxic tumor cells that are normally resistant to radiation therapy. NSC-301467,SR-2508,NSC 301467,NSC301467,SR 2508,SR2508

Related Publications

Fang-Jing Wang, and Chi-Hwa Wang
December 2006, International journal of pharmaceutics,
Fang-Jing Wang, and Chi-Hwa Wang
January 2003, Journal of controlled release : official journal of the Controlled Release Society,
Fang-Jing Wang, and Chi-Hwa Wang
November 2004, Colloids and surfaces. B, Biointerfaces,
Fang-Jing Wang, and Chi-Hwa Wang
May 1999, Journal of controlled release : official journal of the Controlled Release Society,
Fang-Jing Wang, and Chi-Hwa Wang
May 1991, Journal of biomedical materials research,
Copied contents to your clipboard!