Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. 2003

Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
Swiss Federal Institute for Environmental Science and Technology (EAWAG), Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.

This study investigates the oxidation of pharmaceuticals during conventional ozonation and advanced oxidation processes (AOPs) applied in drinking water treatment. In a first step, second-order rate constants for the reactions of selected pharmaceuticals with ozone (k(O3)) and OH radicals (k(OH)) were determined in bench-scale experiments (in brackets apparent k(O3) at pH 7 and T = 20 degrees C): bezafibrate (590 +/- 50 M(-1) s(-1)), carbamazepine (approximately 3 x 10(5) M(-1) s(-1)), diazepam (0.75 +/- 0.15 M(-1) s(-1)), diclofenac (approximately 1 x 10(6) M(-1) s(-1)), 17alpha-ethinylestradiol (approximately 3 x 10(6) M(-1) s(-1)), ibuprofen (9.6 +/- 1.0 M(-1) s(-1)), iopromide (<0.8 M(-1) s(-1)), sulfamethoxazole (approximately 2.5 x 10(6) M(-1) s(-1)), and roxithromycin (approximately 7 x 10(4) M(-1) s(-1)). For five of the pharmaceuticals the apparent k(O3) at pH 7 was >5 x 10(4) M(-1) s(-1), indicating that these compounds are completely transformed during ozonation processes. Values for k(OH) ranged from 3.3 to 9.8 x 10(9) M(-1) s(-1). Compared to other important micropollutants such as MTBE and atrazine, the selected pharmaceuticals reacted about two to three times faster with OH radicals. In the second part of the study, oxidation kinetics of the selected pharmaceuticals were investigated in ozonation experiments performed in different natural waters. It could be shown that the second-order rate constants determined in pure aqueous solution could be applied to predict the behavior of pharmaceuticals dissolved in natural waters. Overall it can be concluded that ozonation and AOPs are promising processes for an efficient removal of pharmaceuticals in drinking waters.

UI MeSH Term Description Entries
D010083 Oxidants, Photochemical Compounds that accept electrons in an oxidation-reduction reaction. The reaction is induced by or accelerated by exposure to electromagnetic radiation in the spectrum of visible or ultraviolet light. Photochemical Oxidants
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D014873 Water Pollutants Substances or organisms which pollute the water or bodies of water. Use for water pollutants in general or those for which there is no specific heading. Water Pollutant,Pollutant, Water,Pollutants, Water
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing
D017665 Hydroxyl Radical The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.
D018508 Water Purification Any of several processes in which undesirable impurities in water are removed or neutralized; for example, chlorination, filtration, primary treatment, ion exchange, and distillation. It includes treatment of WASTEWATER to provide potable and hygienic water in a controlled or closed environment as well as provision of public drinking water supplies. Waste Water Purification,Waste Water Treatment,Wastewater Purification,Wastewater Treatment,Water Treatment,Purification, Waste Water,Purification, Wastewater,Purification, Water,Treatment, Waste Water,Treatment, Wastewater,Treatment, Water,Waste Water Purifications,Waste Water Treatments,Water Purification, Waste

Related Publications

Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
December 2012, Water research,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
June 2005, Environmental science & technology,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
September 2021, The Science of the total environment,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
January 2020, Journal of hazardous materials,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
February 2009, Environment international,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
May 2020, Journal of hazardous materials,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
June 2021, Journal of environmental management,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
February 2017, Journal of hazardous materials,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
October 2022, The Science of the total environment,
Marc M Huber, and Silvio Canonica, and Gun-Young Park, and Urs von Gunten
December 2006, Water research,
Copied contents to your clipboard!