Thermomyces lanuginosus: properties of strains and their hemicellulases. 2003

Suren Singh, and Andreas M Madlala, and Bernard A Prior
Department of Biotechnology, Durban Institute of Technology, P.O. Box 1334, Durban 4000, South Africa. singhs@dit.ac.za

The non-cellulolytic Thermomyces lanuginosus is a widespread and frequently isolated thermophilic fungus. Several strains of this fungus have been reported to produce high levels of cellulase-free beta-xylanase both in shake-flask and bioreactor cultivations but intraspecies variability in terms of beta-xylanase production is apparent. Furthermore all strains produce low extracellular levels of other hemicellulases involved in hemicellulose hydrolysis. Crude and purified hemicellulases from this fungus are stable at high temperatures in the range of 50-80 degrees C and over a broad pH range (3-12). Various strains are reported to produce a single xylanase with molecular masses varying between 23 and 29 kDa and pI values between 3.7 and 4.1. The gene encoding the T. lanuginosus xylanase has been cloned and sequenced and is shown to be a member of family 11 glycosyl hydrolases. The crystal structure of the xylanase indicates that the enzyme consists of two beta-sheets and one alpha-helix and forms a rigid complex with the three central sugars of xyloheptaose whereas the peripheral sugars might assume different configurations thereby allowing branched xylan chains to be accepted. The presence of an extra disulfide bridge between the beta-strand and the alpha-helix, as well as to an increase in the density of charged residues throughout the xylanase might contribute to the thermostability. The ability of T. lanuginosus to produce high levels of cellulase-free thermostable xylanase has made the fungus an attractive source of thermostable xylanase with potential as a bleach-boosting agent in the pulp and paper industry and as an additive in the baking industry.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001203 Ascomycota A phylum of fungi which have cross-walls or septa in the mycelium. The perfect state is characterized by the formation of a saclike cell (ascus) containing ascospores. Most pathogenic fungi with a known perfect state belong to this phylum. Ascomycetes,Cochliobolus,Sclerotinia,Ascomycete,Ascomycotas,Sclerotinias
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014995 Xylosidases A group of enzymes that catalyze the hydrolysis of alpha- or beta-xylosidic linkages. EC 3.2.1.8 catalyzes the endo-hydrolysis of 1,4-beta-D-xylosidic linkages; EC 3.2.1.32 catalyzes the endo-hydrolysis of 1,3-beta-D-xylosidic linkages; EC 3.2.1.37 catalyzes the exo-hydrolysis of 1,4-beta-D-linkages from the non-reducing termini of xylans; and EC 3.2.1.72 catalyzes the exo-hydrolysis of 1,3-beta-D-linkages from the non-reducing termini of xylans. Other xylosidases have been identified that catalyze the hydrolysis of alpha-xylosidic bonds. Xylobiases,Xylan Hydrolases,Hydrolases, Xylan
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D043325 Xylan Endo-1,3-beta-Xylosidase A xylosidase that catalyses the random hydrolysis of 1,3-beta-D-xylosidic linkages in 1,3-beta-D-xylans. Endo-1,3-beta-Xylanase,Endo 1,3 beta Xylanase,Endo-1,3-beta-Xylosidase, Xylan,Xylan Endo 1,3 beta Xylosidase

Related Publications

Suren Singh, and Andreas M Madlala, and Bernard A Prior
June 2000, Journal of applied microbiology,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
November 2000, Applied microbiology and biotechnology,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
August 2000, Journal of biotechnology,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
April 2000, Enzyme and microbial technology,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
January 2004, Roczniki Panstwowego Zakladu Higieny,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
January 2004, Roczniki Panstwowego Zakladu Higieny,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
October 1987, Indian journal of biochemistry & biophysics,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
April 2005, Wei sheng wu xue bao = Acta microbiologica Sinica,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
January 2005, Folia microbiologica,
Suren Singh, and Andreas M Madlala, and Bernard A Prior
November 2007, Fungal genetics and biology : FG & B,
Copied contents to your clipboard!