The KOX zinc finger genes: genome wide mapping of 368 ZNF PAC clones with zinc finger gene clusters predominantly in 23 chromosomal loci are confirmed by human sequences annotated in EnsEMBL. 2002

M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
Inserm U509, Institut Curie, Paris, France. Marie-Francoise.Merck@curie.fr

The chromosome locations of 368 human Kruppel-type zinc finger (ZNF) PAC clones were physically mapped by FISH to human chromosomes in support of recent efforts of assigning KOX cDNAs (KOX1-KOX32) to zinc finger gene clusters. Recent mapping results were validated and confirmed by sequence comparisons to zinc finger gene sequences automatically annotated in EnsEMBL. In toto, 799 Kruppel-type zinc finger genes have been annotated in EnsEMBL of which 290 genes are found to encode KRAB domains. Sequence homologies of the zinc finger domains were used to establish phylogenic trees of KOX zinc finger genes as well as of all KRAB containing human zinc finger and KOX genes documenting the evolution of KRAB zinc finger genes late in primate evolution. A list of 368 assigned ZNF PAC clones is available under http://www.pzr.uni-rostock.de/supplements.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D016335 Zinc Fingers Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites. Zinc Finger DNA-Binding Domains,Zinc Finger Motifs,Finger, Zinc,Fingers, Zinc,Motif, Zinc Finger,Motifs, Zinc Finger,Zinc Finger,Zinc Finger DNA Binding Domains,Zinc Finger Motif

Related Publications

M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
October 2007, Human molecular genetics,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
March 1993, Nucleic acids research,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
June 2003, Genome research,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
October 2011, Anticancer research,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
October 2013, Plant cell reports,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
August 2020, BMC plant biology,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
March 2012, Genome research,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
January 2017, Human molecular genetics,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
October 2011, Nucleic acids research,
M F Rousseau-Merck, and D Koczan, and I Legrand, and S Möller, and S Autran, and H-J Thiesen
November 2021, Journal of fungi (Basel, Switzerland),
Copied contents to your clipboard!