Amino acid sequence of an active fragment of potato proteinase inhibitor IIa. 1976

T Iwasaki, and T Kiyohara, and M Yoshikawa

The complete amino acid sequence of an active fragment of potato proteinase inhibitor IIa has been established by the Edman degradation procedure and the carboxypeptidase technique. Sequence analyses were carried out on the reduced and carboxymethylated active fragment and its tryptic peptides. To aid in the alignment of some tryptic peptides, the partial sequences of two fragments obtained by selective tryptic cleavage of the reactive site peptide bond of inhibitor IIa at acidic pH, with subsequent reduction and carboxymethylation, were also analyzed. The active fragment consisted of 45 amino acid residues including 6 half-cystine residues. Degradation of the intact active fragment by subtilisin [EC 3.4.21.14.] at pH 6.5. yielded 3 cystine-containing peptides. Sequence analyses of these peptides revealed that the 3 disulfide linkages were located between Cys(10) and Cys(24), Cys(14) and Cys(35), and Cys(20) and Cys(43). The reactive site peptide bond of inhibitor IIa, a Lys-Ser bond, was located between positions 32 and 33 of the active fragment. The overall sequence of the active fragment was quite different from those of potato chymotrypsin inhibitor I (subunit A) and potato carboxypeptidase inhibitor.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

T Iwasaki, and T Kiyohara, and M Yoshikawa
January 1976, Proceedings of the National Academy of Sciences of the United States of America,
T Iwasaki, and T Kiyohara, and M Yoshikawa
November 1978, Journal of biochemistry,
T Iwasaki, and T Kiyohara, and M Yoshikawa
September 1983, Biochemical and biophysical research communications,
T Iwasaki, and T Kiyohara, and M Yoshikawa
May 1984, Biochemical and biophysical research communications,
T Iwasaki, and T Kiyohara, and M Yoshikawa
May 1980, FEBS letters,
T Iwasaki, and T Kiyohara, and M Yoshikawa
March 1979, FEBS letters,
T Iwasaki, and T Kiyohara, and M Yoshikawa
December 1979, Biochemical and biophysical research communications,
T Iwasaki, and T Kiyohara, and M Yoshikawa
June 1983, Journal of molecular biology,
Copied contents to your clipboard!