Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. 1976

L A Bentle, and H A Lardy

The catalytic activity of phosphoenolpyruvate carboxykinase in rat liver cytosol is stimulated by incubating with Fe2+, Mn2+, Co2+, and Cd2+. When purified, the enzyme no longer responds to Fe2+, Co2+, or Cd2+ but retains a response to Mn2+. Low concentrations of SO4(2-) in the incubation medium with enzyme and divalent transition metal allow stimulation by Fe2+ and Co2+ and enhance the response to Mn2+. Under identical conditions, orthophosphate with Fe2+ is a potent inhibitor of the enzyme (half-maximal inhibition at 50 muM). A thiol is required in the incubation medium for the effects of Fe2+ plus sulfate or orthophosphate to be expressed. The magnitude of these effects depends on the thiol concentration. Dithiothreitol is more effective than GSH and activation by sulfate plus Fe2+ appears to require the reduced form of dithiothreitol. Sulfate ion is not considered to be the physiological Fe2+-activator of P-enolpyruvate carboxykinase in rat liver cytosol, as this function is fulfilled by a newly discovered liver protein. Knowledge concerning the interaction of Fe2+ and sulfate with the enzyme may be useful in examining their interaction between the enzyme, ferrous ion, and this activator protein.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59

Related Publications

L A Bentle, and H A Lardy
January 1991, Molekuliarnaia biologiia,
L A Bentle, and H A Lardy
January 1988, Biofizika,
L A Bentle, and H A Lardy
March 1974, Biochemistry,
L A Bentle, and H A Lardy
February 1980, The Biochemical journal,
L A Bentle, and H A Lardy
November 2009, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
L A Bentle, and H A Lardy
October 2004, International journal of biological macromolecules,
Copied contents to your clipboard!