Electrical properties of developing oocytes of the migratory locust, Locusta migratoria. 1976

Z Wollberg, and E Cohen, and M Kalina

The electrical properties of developing nonfertilized oocytes of Locusta migratoria were studied, using intracellular microelectrodes. The inseries potential of the combined oomembrane and of the follicular cells was about 20 mV in the youngest oocytes. It increased as the oocytes developed and it reached a plateau of about 50 mV before full maturation, generally four to seven oocytes away from the fully-developed terminal oocyte. Current-voltage relations were always linear for hyperpolarizing currents. Most oocytes exhibited, however, rectification to outward current. Input resistance values varied with oocyte size from about 5 X 10(6) ohm for young oocytes to about 0.2 X 10(6) ohm for the more developed ones. Some oocytes displayed a transient depolarization on turning off a hyperpolarizing step of current. This depolarization was not correlated with the size of the oocyte or with any observed morphological feature. Any two adjacent oocytes were electrotonically coupled. A single ovariole thus represented a longitudinal chain of developing oocytes which were connected electrically. This was supported by electron microscope observations which revealed junctions partially impermeable to lanthanum and gap junctions between the follicular cells themselves and between follicular cells and oocytes. The coupling coefficient was dependent on the direction of current flow. The attenuation of voltage along an ovariole was always greater at the distal than at the proximal side.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Z Wollberg, and E Cohen, and M Kalina
February 2024, Journal of chemical ecology,
Z Wollberg, and E Cohen, and M Kalina
March 2024, Journal of chemical ecology,
Z Wollberg, and E Cohen, and M Kalina
January 1945, Comptes rendus hebdomadaires des seances de l'Academie des sciences,
Z Wollberg, and E Cohen, and M Kalina
September 1968, Comparative biochemistry and physiology,
Z Wollberg, and E Cohen, and M Kalina
April 2015, Insects,
Z Wollberg, and E Cohen, and M Kalina
October 2013, Journal of insect physiology,
Z Wollberg, and E Cohen, and M Kalina
December 2016, Insect molecular biology,
Z Wollberg, and E Cohen, and M Kalina
January 1982, Cell and tissue research,
Z Wollberg, and E Cohen, and M Kalina
February 2014, Pesticide biochemistry and physiology,
Copied contents to your clipboard!